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Abstract

Background: Hepatitis C (HCV) viral infection is a serious medical problem in Egypt and it has a
devastating impact on the Egyptian economy. It is estimated that over 15% of Egyptians are infected
by the virus and thus finding a cure for this disease is of utmost importance. Current therapies for
hepatitis C virus (HCV) genotype 4 with interferon/ribavirin have not been successful and thus the
development of alternative therapy for this genotype is disparately needed.

Results: Although previous studies utilizing viral subgenomic or full cDNA fragments linked to
reporter genes transfected into adhered cells or in a cell free system showed promise,
demonstration of efficient viral replication was lacking. Thus, we utilized HepG2 cells infected with
native HCV RNA genomes in a replication competent system and used antisense phosphorothioate
Oligonucleotides (S-ODN) against stem loop llld and the AUG translation start site of the viral
polyprotein precursor to monitor viral replication. We were able to show complete arrest of
intracellular replication of HCV-4 at | uM S-ODN, thus providing a proof of concept for the
potential antiviral activity of S-ODN on native genomic replication of HCV genotype 4.

Conclusion: We have successfully demonstrated that by using two S-ODNs [(S-ODNI (nt 326—
348) and S-ODN-2 (nt 264-282)], we were able to completely inhibit viral replication in culture,
thus confirming earlier reports on subgenomic constructs and suggesting a potential therapeutic
value in HCV type 4.

|. Background

It is estimated that over 170 million people are infected
globally with hepatitis C virus (HCV), and its devastating
impact is further magnified by the high frequency of HCV
persistence during infection, i.e., establishing a chronic
infection in up to 85% of cases [1]. HCV infection has
become the most common cause of hepatocellular carci-

noma, and the primary reason for liver transplantations
among adults in the western world [2]. There are no
broadly effective anti-HCV compounds and therefore new
and better therapeutic strategies are desperately needed in
the battle against HCV [3]. Several issues that are pertinent
to HCV infections made it difficult to develop an effective
therapy. These include genetic diversity during replication
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in the host, development of drug resistant virus mutants,
and the lack of reproducible infectious culture systems
and small animal models for HCV replication and patho-
genesis. Although interferon-a treatment as antiviral ther-
apy has been beneficial, it is limited by the adverse side
effects such as flu-like syndrome, and is only successful in
15% of patients [4]. Combination therapy of the more
stable, pegylated IFN-o and ribavirin improves response
rate to more than 50% with fewer side effects [5]; which
makes it the standard treatment for chronic HCV. How-
ever, most patients with chronic HCV infection are not
candidates for IFN-a-based therapies, and the IFN-q.-treat-
ments has limited efficacy in immunocompromised
patients and treatment of HCV/HIV co-infection presents
another challenge. So the development of alternative ther-
apeutic interventions based on newer strategies is urgently
needed. A novel strategy that has emerged in the last few
years is to target HCV genomic RNA by using antisense
oligonucleotide (ASO) technology, which inhibits gene
expression by inducing cleavage of the target RNA at the
site of oligonucleotide hybridization by an RNase H-
mediated mechanism. Clinical evaluations are underway
for the efficacy of ASOs-based drugs in patients with pros-
tate cancer, pancreatic cancer, colorectal cancer, Crohn's
disease, rheumatoid arthritis, asthma, HIV-infected
patients, etc. [6]. The approval of Vitravene as antisense
drug for treatment of cytomegalovirus (CMV)-induced
retinitis in AIDS patients paves the way for attempts
towards finding an antisense drug that can be successfully
used for treatment of HCV infected patients [6]. Several
ASOs that have been designed to bind to the stem-loop
structures in the HCV Internal Ribosome Entry Sites
(IRES) have been effective in inhibiting HCV replication
in cell-culture assays and the expression of HCV luciferase
reporter gene in the livers of mice infected with recom-
binant vaccinia virus expressing the reporter construct [7].
Studies on HCV using ASOs have utilized antisense phos-
phorothioate oligonucleotides (S-ODN) that were
designed as complementary to sequences present in the 5'
non coding region (5'-NCR) of IRES of the viral genome.
These studies were carried out using inhibition of gene
expression in HCV-luciferase reporter constructs as a rea-
dout, or using inhibition of viral replication using subge-
nomic HCV containing 5'-NCR, core, and part of the
envelope proteins components driven by HCMV immedi-
ate early promoter [8]. The use of such subgenomic or
genomic replicon has been useful in elucidating the repli-
cative machinery of the virus but could not mimic the
actual viral replication cycle and shedding of the virus to
the culture medium. Despite the extremely robust in vivo
replication rate of HCV, efforts to propagate the virus in
cell culture have been frustratingly unsuccessful [9]. Thus
the viral replication but not the biologically relevant infec-
tious viral particles can be demonstrated by such an
approach.

http://www.cancerci.com/content/6/1/18

In the present study we elected to make use of HepG2 cells
infected with native viral particles from HCV type 4 posi-
tive serum, the most prevalent type in Egypt. We were able
to maintain these cells in culture for more than 4 months
and they are capable of supporting HCV replication as
indicated by consistent synthesis of plus and minus RNA
strands by nested RT-PCR and by real-time PCR tech-
nique. We show that the two S-ODNs we selected, S-
ODNI1 (nt 326-348) and S-ODN-2 (nt 264-282), com-
pletely inhibited viral replication in culture, thus confirm-
ing earlier reports on subgenomic constructs and
suggesting a potential therapeutic value in HCV type 4.

2. Materials and methods

2.1 Sequence analyses of 5'UTR in local HCV quasispecies
Serum samples were collected from five HCV positive
patients who were diagnosed by detectable HCV RNA
using nested RT-PCR method as described [10]. RNA sam-
ples were extracted and the entire 5' UTR was reverse tran-
scribed using P2 as 3' end primer and then amplified
using P1 as forward primer and P2 as the reverse primer.
Successful amplification was confirmed by employing a
nested amplification using primers P3 and P4. Five to ten
first round amplification products from each patient were
collected and the 340 bp DNA generated fragment was
ligated into pGEM-T plasmid (Promega Madison, WI) and
transformed into competent JM109 E. Coli. Seventeen
recombinant plasmids were purified from individual
white colonies using mini preparation method (Promega,
Madison, WI). Insert DNA clones were sequenced in both
the forward and the reverse directions using Sp6 and T7
primers respectively. Cycle sequencing reactions were per-
formed using the Big Dye terminator method (ABI Foster
City, CA). The sequence of each quasispecies was deter-
mined on ABI 310 prism (ABI Foster City, CA). The
sequences obtained from 17 5' UTR fragments, each rep-
resenting independent isolate, were aligned with the pub-
lished sequence from HCV genotype, 4a. Alignments of
only two local HCV isolates with type 4a are shown in fig-
ure 1.

2.2 Design and synthesis of oligodeoxynucleotides

The highly conserved regions among all HCV isolates
were identified as targets for antisense (S-ODN). Based on
earlier studies [8,11] two IRES motifs represented targets
for the most efficient inhibition of viral replication by
ODN namely; S-ODN1 (nt 316 - 339) and S-ODN2 (nt
254 - 272) as in fig 1.

Although alignment of 5' UTR sequences in type 4a had
nucleotide differences ranging from 3.5% to 5.3% when
compared to isolates of type 4 used in the present study,
the two stem loop targets for S-ODN1 and S-ODN2 are
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NO1 TTGGGGGCGACACTCCACCATAGATCACTCCCCTGTGAGGTACTACTGTCTTCACGCAGA 60
NOS5 TTGGGGGCGACACTCCACCATAGATCACTCCCCTGTGAGGAACTACTGTCTTCACGCAGA 60
4da TTGGGGGCGACACTCCACCATAGATCACTCCCCTGTGAGGAACTACTGTCTTCACGCAGA 60
NO1 AAGCGTCTAGCCATGGCAGTTAGTATAGAGTGTCGTACAGCCTCCAGGACCCCCCCTCCC
120
NOS5 AAGCGTCTAGCCATGGCAGTTAGTATAGAGTGTCGTACAGCCTCCAGGACCCCCCCTCCC
ijo AAGCGTCTAGCCATGGC-GTTAGTAT-GAGTGTTGTGCAGCCTCCAGGACCCCCCCTCCC
e Kok ok ok kk Kk kK ko k ok ok ok ok k ok ok ko kk ko ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok
NO1 GGGAGAGCCATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATCGCCAGGACGACCGGG
1
Nf)g GGGAGAGCCATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATCGCCAGGACGACCGGG
180
4a GGGAGAGCCATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGG
178 ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ko
NO1 TCCTTTCTTGGATAAACCCGCTCCATGCCTGGAAATTTGGGCGTGCCCCCGCAAGACTGC
Iflgg TCCTTTCTTGGATAAACCCGCTCCATGCCTGGAAATTTGGGCGTGCCCCCGCAAGACTGC
24
4aU TCCTTTCTTGGATCAACCCGCTCAATGCCTGGAGATTTGGGCGTGCCCCCGCGAGACTGC
238 ok ko kK ko ko kb ok ok ok k ok kb kb ok ok kK k ok ko k ok ok ok ok ok ok ok ko ko ko ko ko ok ko
NO1 TAAGCGAGTAGTGTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAAGGTGCTTGCGA
f]gg TAGCCGAGTAGTGTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGA
320 TAGCCGAGTAGTGTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGTGCTTGCGA
208 * ok ok ok ok ok ko kK ok ok ko ok K Sk ok ok ok ok ok ks kK ok ok ko ko k ko ok k ko ok ok kK ok ok k kK k ok
NO1 GTCGCCGGGGAGGTACTCGTAGACCTGTGCACCATGAGCACGAATTCCTAAACCTCAAAG
i]gg GTGCCCCNGGAGGTA-TCGTAGACC-GTGCACCATGAGCACGAATTCCTAAACCTCARAG
ji ‘ GTGCCCCGGGAGGTC-TCGTAGACC-GTGCATCATGAGCACAAAT-CCTAAACCTCAAAG
355
S-ODN1
Figure |

Nucleotide sequence of 5' UTR in viral quasispecies.
5" UTR from a pool of HCV infected sera was RT-PCR ampli-
fied using primers pl and P2 and ~340 bp product spanning
the entire 5' UTR was cloned into pGEM-T plasmid. Single
colony from transformed JM109 cells were used for plasmid
DNA purification and sequencing. NOI and NO?2 are repre-
sentative clones from |7 isolates of 5' UTR fragments. The
bold sequences represent targets for antisense phosphothio-
ate oligonucleotides (S-ODNI and S-ODN2). Highly con-
served triplets necessary for efficient initiation of translation
are shown in bold underlined letters.

conserved among all isolates analyzed except for a single
mismatch in only one isolate (NO1). Therefore, we
selected the following two sequences for S-ODN design

S-ODN1 (5'TGCTCATGGTGCACGGTCTACGA3');
S-ODN2 (5' GGCCTTTCGCGACCCAA 3').

Antisense nucleotides were purchased from biognostik,
Gesellschaft fur molekulare diagnostik, Gottingen (Ger-
many). Phosphorothioate DNA were synthesized as Na -
salts and systematically purified using 2 steps high pres-
sure liquid chromatography followed by cation exchange
chromatography, and sterile ultra-filtration to remove any
interfering substances that might be toxic to culture sys-
tems.

http://www.cancerci.com/content/6/1/18

2.3 HepG2 cell culture and infection with HCV

HepG2 cells were obtained from the American Type Cul-
ture Collection (ATCC HB8065) and maintained in 75
cm? tissue culture flasks (Greiner bio-one GmbH, Ger-
many) containing Dulbecco's Modified Eagle's Medium
with 0.45 % Glucose and 1 % L-Glutamine (DMEM; Bio-
Whittaker, Combrex Company, Belgium) supplemented
with 10 % Fetal Calf Serum (FCS; Biochrome KG Berlin
Germany) and antibiotics (penicillin/streptomycin 10000
1/10000 pg/ml (Biochrome KG Berlin Germany) and fun-
gisone (GIBCO- BRL life technologies, Grand Island NY).
The cells were fed fresh medium every 3 days and were
grown to semi-confluence (8 to 10 days) and were then
sub-cultured.

The principal inoculum was a serum sample obtained
from a 23 year old male patient, who was positive for anti-
HCV antibodies and HCV RNA. HCV genotype in this
sample was identified as type 4 using the method
described by Ohno et al [12]. Sequence analysis of 5'UTR
in three isolates cloned from this patient revealed signifi-
cant homology to the published strains and 100 %
sequence conservation at IRES stem loop structures. Viral
load in the serum sample used was 290,000 copies/ml.
Cells were maintained in complete medium (8 ml) for 48
hours at 37°C. Cell layers were washed twice with FCS-
free medium and incubated with 500 pul HCV positive
serum plus 500 ul FCS-free DMEM for 90 minutes.
Medium and FCS were then added to make a final of 10
% FCS in 8 ml complete DMEM. The cells were main-
tained overnight at 37°C in 5 % CO,. Next day, adherent
cells were washed three times with culture medium and
incubation continued in complete medium supple-
mented with 10 % FCS with regular medium changes.
Assessment of the viral infection in HepG2 cells through-
out the culture duration was confirmed by RT-PCR ampli-
fication of plus and minus strand as described previously
(13) as well as consistent viral load by real time PCR over
4 month period in culture. S-ODN1 and S-ODN2 were
added to infected cells in culture wells (3 wells for each
treatment) at 1 pM and 2 pM and were maintained for 24,
48 and 72 hours.

2.4 Detection of plus-, and minus-strand RNA by nested
RT-PCR

Cellular RNA's from three separate wells were extracted
using SEEK VIRAL RNA extraction kit (TALENT, Trieste-
Italy) and subjected to nested RT-PCR analysis. Total RNA
from cultured HepG2 cells were reverse transcribed and
amplified using primer sequences derived from the highly
conserved noncoding region of HCV genome as described
[10]. The reaction was performed in 25 ul reaction mix-
ture containing 20 units of AMV reverse transcriptase
(Clonetech, USA), 200-400 ng of total cellular RNA as
template, 40 units of RNAsin (Clonetech, USA), 0.2
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mmol/l from each dANTP (QBIOGENE, USA), and 50
pmol of the reverse primer p2 (for plus strand) or 50 pmol
of the forward primer p1 (for minus strand). The reaction
was incubated at 42 °C for 60 min. and denatured at 98°C
for 10 min. Amplification of the highly conserved 5'-UTR
sequences was done using two rounds of PCR with 2 pairs
of nested primers. First round amplification was done in
50 ul reaction containing 50 pmol from each of p1 for-
ward primer and P2 reverse primer, 0.2 mmol/] from each
dNTP, 10 ul from RT reaction mixture as template and 2
units of Tag DNA polymerase (Finnzyme, USA) in a 1x
buffer supplied with the enzyme. The thermal cycling pro-
tocol was as follows: 1 min. at 94°C, 1 min at 55°C and
1 min at 72°C for 30 cycles. The second round of amplifi-
cation was done similar to the first round, except for use
of the nested reverse primer p4 and forward primer p3 at
50 pmol each. A fragment of 171 bp length was identified
in positive samples. Primer sequences were as follows:

P1 5'AACTACTGTCTTCACGCAGAA 3'

P2 5' GGTGCACGGTCTACGAGACCTC 3'
P3 5" GTGCAGCCTCCAGGACCC 3'

P4 5" ACTCGGCTAGCAGTCTCGCG 3'

2.5 RNA quantification of in-vitro infection

HCV RNA quantification of in-vitro infection

Plus-strand RNA was transcribed in-vitro from a cloned
fragment of the HCV genome encompassing the entire 5'
UTR in pGEM-T plasmid using in vitro transcription sys-
tem as described by the manufacturer (Promega, Madi-
son, WI, unpublished data). The transcribed 5' UTR RNA
was purified and quantified by O.D,. Serial copy num-
bers ranging from 2 x 10° - 2 x 107 copies/reaction were
reverse transcribed and amplified using the same RT-PCR
primers and same protocol described above for plus
strand amplification. Amplified products from nested RT-
PCR reactions of RNA isolated from infected cells and
standards were resolved on 2% agarose gel and stained
with ethidium bromide. Polaroid photographed gels were
scanned and the intensity of the amplified bands were
analyzed using Total Lab software (Phoretix, Newcastle,
UK). Numbers of copies per each 5 UTR concentrations
were plotted against number of intensity units expressed
as pixels. The number of copies in each specimen was cal-
culated on the standard curve using the number of pixels
in each case

Quantification of human Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA

To check the integrity of the cellular RNA preparations
from HCV infected HepG2 cells, we quantified GAPDH
mRNA in the absence and in presence of S-ODN1 and S-

http://www.cancerci.com/content/6/1/18

ODN2. We wanted to ensure that S-ODN used in this
study do not adversely affect the expression of a house
keeping gene from host cells. The GAPDH mRNA levels
were quantified by real time RT-PCR using TagMan tech-
nology and GAPDH specific primers [14]. Amplification
of human GAPDH transcripts was performed basically
using the TagMan EZ RT-PCR kit (Applied Biosystems,
Foster City, CA). The target template was the purified cel-
lular RNA from HepG2 cells at 24 and 48 hours post infec-
tion with HCV, in absence and presence of S-ODN1 or S-
ODN?2 (at either 1 uM or 2 uM each). Reverse transcrip-
tion-PCR was done by using a single-tube, single-enzyme
system. The reaction exploits the 5'-nuclease activity of the
Tth DNA polymerase to cleave a TagMan fluorogenic
probe that anneals to the cDNA, during PCR, between the
forward primer at nucleotide position 1457 and reverse
primer at nucleotide position 3412 of the human GAPDH
gene. In a 50 pl reaction volume, 1.5 pl of RNA template
solution equivalent to total cellular RNA from 2.5 x 105
cells were mixed with 200 nM forward primer, 100 nM
reverse primer, 100 nM GAPDH probe, 300 uM from each
of dATP, dCTP, dGTP and 600 uM dUTP, 3 mM manga-
nese acetate, 0.5 u rTth DNA polymerase, 0.5 u Amp Erase
UNG, 1x Tagman EZ buffer and amplified in the sequence
detection system ABI 7700 (Applied Biosystems, Foster
City, CA). The RT-PCR thermal protocol was as follows:
Initial UNG treatment at 50°C for 2', reverse transcription
at 60°C for 30', deactivation of UNG at 95°C for 5' fol-
lowed by 40 cycles each consists of denaturation at 94°C
for 20" and annealing/extension at 62°C for 1'.

2.6 Statistical analysis

The data sown in Figure 2 and 3 were carried out at least
in triplicates for each treatment and data averages with
standard errors of the means are shown.

3. Results

Identification of sequence conservation among IRES

To determine the conservation of IRES motifs across HCV
isolates, nucleotide sequences of 17 5'NCR clones from 5
HCV type 4 infected subjects were analyzed and compared
with published 5' UTR. Comparisons of only two isolates
(NO1 and NO2) having the greatest sequence diversity
within 5'NCR from that of genotype 4a are shown in Fig
1. Nucleotide sequences show identity with genotype 4a
except for 13 and 22 nucleotides for NO1 and NOS5,
respectively while the mismatches between the two iso-
lates is 10 nucleotides. Figure 1 also shows well-conserved
blocks in the IRES motifs (1 to 4) and a phylogenetic con-
servation of triplet GGG (nt 256-258) in stem loop IIId
and triplet ATG (nt 333-335) at the translational initia-
tion of the core gene. Based on previous reports, IRES1
and IRES2 spanning the regions (nt 316-338) and (nt
254-272) termed S-ODN1 and S-ODN2 respectively,
were predicted to be the best targets for demonstrating
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Inhibition of intracellular plus and minus-RNA strands by antisense primers. HepG2 cells were cultured in absence
(lanes 1,2) and presence of S-ODNI (Fig 2a) or S-ODN2 (Fig 2b) at either | uM (lanes 3,4) or 2 uM (lanes 5,6). Cellular RNA
was reverse transcribed using plus strand (lanes 1,3,5) or minus-strand (lanes 2,4,6) specific primers. cDNAs were amplified by
nested PCR as in materials and methods. RNA from infected and uninfected sera were similarly amplified to serve as positive
(lane7) and negative (lane 8) controls. Band density in each lane was scanned and measured using Total-Lab software. Relative

viral copies/cell are represented in figure 2c.

inhibitory effects of S-ODN on viral replication and poly-
protein expression.

Effect of S-ODN on the detection of plus- and minus-
strand RNA in HepG2 cells

HepG2 cells infected with HCV type 4 were grown in cul-
ture for 24, 48 and 72 hours in the absence and presence
of two concentrations of antisense S-ODN (1 uM and 2
puM), and the results of nested RT-PCR for HCV plus and
minus strand RNA in the absence and presence of S-
ODNI1 are shown in Fig 2a. It is apparent that both plus-,
and minus-RNA strands were detected in HepG2 cells
after 24, 48 and 72 hours in culture (control + & -). Addi-
tion of S-ODN1 to the culture failed to inhibit plus strand

RNA after 24 hours at either concentrations (1 uM and 2
pM). Only the minus-strand RNA was inhibited at 24
hours after addition of 1 uM S-ODN11 to the culture. Both
concentrations used for S-ODN1 inhibited completely
(100% inhibition) the synthesis of both plus- and minus-
strands RNA of HCV after 48 hours and their effects
extended till 72 hours of culture. Figure 2b demonstrates
the effect of S-ODN2 on plus- and minus-strand RNA of
HCV in infected cells. The results shown in this figure are
fairly similar to those shown in figure 2a, except that both
plus- and minus-RNA strands were detectable throughout
the first 24 hours of culture supplemented with either
concentration of S-ODN2. Furthermore, plus-strand RNA
of HCV was still detectable; although weakly, in presence
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Concentration of GAPDH transcripts in HepG2 cells
treated with antisense primers. HepG2 cells were cul-
tured in absence and in presence of S-ODN| and S-ODN2 at
concentrations of | uM or 2 uM for 24 h. & 48 h. as
described in legend for fig(2). Purified cellular RNA from 2.5
x 105 cells was RT-PCR amplified using the Tagman EZ-RT-
PCR kit as in materials and methods. Fluorescent-labeled
amplicons from different samples was calculated for each
sample from standard GAPDH RNA provided with kit, the
concentrations of GAPDH transcripts throughout the cul-
ture were plotted as lines.

of 1 uM S-ODNZ2 after 48 hours. Similar to S-ODN1 (fig.
2a), S-ODN2 completely inhibited the synthesis of both
plus and minus RNA strands at 2 uM concentration after

48 hours and at both concentrations after 72 hours (fig.
2b).

Quantification of the inhibitory effect of S-ODN on
intracellular viral load

To quantitatively analyze the inhibitory effect of S-ODN
on HCV replication, total cellular RNA was examined for
viral copy number in infected cells. Quantification of
intracellular plus-strand RNA was performed as described
in materials and methods. Figure 2¢ displays the HCV
copy number in infected cells in absence and in presence
of S-ODN1 or S-ODN2 in culture for 24, 48, and 72 hr
duration. It appears that the viral copy number fluctuates
mildly throughout the experiments, ranging from (8 to
10) x 103 genome equivalents per 10° cells. When either
S-ODN1lor S-ODN2 was added at 1 uM or 2 uM concen-
trations to the culture, no significant changes in viral
genome numbers were noted indicating that 24 hrs is
insufficient to observe detectable inhibition on HCV load.
Whereas, approximately 400 HCV genome equivalents
per 100 cells representing 5% of the initial copy numbers
were still amplifiable after 48 hrs in cells treated with 1
puM S-ODN1 whereas 2 uM S-ODN1 totally abolished
viral RNA after 48 hrs. Total viral eradication was observed
after 48 hrs when cells were stimulated with S-ODN2. In

http://www.cancerci.com/content/6/1/18

general similar results were obtained after 72 hrs when 1
or 2 uM of either antisense was tested. This indicates that
at least a period of 48 hrs is required for either antisense
deoxynucleotide to have 100% inhibitory effect on HCV
translation driven from the AUG start codon (nt 326-
348) and stem loop II1d (nt 264-282).

Effect of S-ODN|I nucleotides on GAPDH RNA

To demonstrate that the observed inhibitory effect of S-
ODN was specific to HCV gene expression, the same cel-
lular RNA samples from HCV/HepG2 cells treated with S-
ODN were utilized to amplify the human cellular Glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) mRNA
using real time PCR and Tagman technology. The results
displayed in figure 3 demonstrated that total cellular
RNA's used as template for HCV amplification were intact
in all preparations used in these experiments and varies
within a range of one to two fold increase when compared
with GAPDH abundance in control cells. These results
clearly demonstrate that the inhibitory effect of antisense
S-ODN is specific to HCV translation and the in vitro sys-
tem described herein. Collectively, these results support
the usefulness of HCV consistent replication and testing
of antisense S-ODN molecules for their antiviral activity.

4. Discussion

The current strategies for treatment of HCV liver disease
are not yet satisfactory to the majority of HCV patients.
Sustained viral response to interferon o, plus ribavirin
combined therapy has been successful for only 10%
among Egyptian HCV patients who are predominantly
infected with genotype 4 [10]. Data on the use of
pegylated interferon in Egyptian patients infected with
this HCV genotype have not yet been completed. Moreo-
ver, combination therapy has significant side effects and is
poorly tolerated by individuals who are affected by other
diseases, and the overall chances for a cure are less than
50%. Thus the development of alternative antiviral thera-
pies is of paramount interest to many investigators and
clinicians who are dealing with this devastating disease in
Egypt. Unlike nonspecific antiviral treatment with inter-
feron-a. and ribavirin, target specific antiviral therapy
would directly block viral replication and prevent contin-
uing infection of liver. These potential therapies include
nucleoside analogues [14], bridged nucleic acids (BNA)
[15], inhibitors of viral proteases, helicases and polymer-
ases [16-18], and antisense phosphorothioate oligodeox-
ynucleotides (S-ODN). The latest therapeutic option i.e.
S-ODN has received much attention from several investi-
gators around the world [8,11]. However, as alluded to
earlier, the lack of a reliable cell culture system allowing
persistent in vitro virus propagation is still hampering
screening of antiviral activity of these molecules and the
development of effective therapies. Much of the struggle
against HCV is caused by its genetically heterogeneous
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nature and the existence of quasispecies. Quasispecies are
distinct but closely related variants of the virus and circu-
late in the infected individuals. This viral heterogeneity
results from high error rate of NS5B gene-coded RNA-
dependent RNA polymerase Because the liver is the main
target for replication of HCV in vivo, the majority of cell
types used for HCV replication in vitro were of a human
hepatocyte origin; including human hepatoma, HuH7
[19]; hepatoblastoma, HepG2 [19,20], fetal hepatocytes
[21,22] or fused primary human hepatocytes with hepato-
blastoma cells [22]. In the present study, the reasons why
we utilized HepG2 cells for HCV replication in vitro
experiments are attributed to their similarities to primary
human hepatocytes in their biosynthetic pathways. An
additional advantage of HepG2 cells is the presence of a
66 K Da receptor protein for S-ODN that was purified
from HepG2 cell membrane [23], thus allowing reasona-
ble uptake and cytosolic transfer of S-ODN in these cells.
There have been several approaches for testing the efficacy
of antiviral agents on HCV replication. Transfection of
subgenomic viral cDNA fragments that were linked to
reporter genes such as the firefly luciferase gene and
expressing non structural and structural proteins in vari-
ous expression systems have been reported [8,11,24].
These viral constructs were not permissible for HCV repli-
cation. Alternatively, full-length cDNA clones were con-
structed from positive stranded viral RNA genomes and
were found infectious to cells [25,26]. The viral RNA, pro-
duced presumably via transcription of transfected cDNA,
is expected to be inactivated due to splicing and polyade-
nylation processes similar to all nuclear transcripts. Fur-
thermore, a major problem that makes this approach
suboptimal for the present study is its structural limita-
tions in terms of the correct length and sequences at 3' and
5'ends of RNA molecules. The later comprises the compo-
nents of the IRES, which is the main target for S-ODN in
this study. The IRES is a highly structured RNA element
that directs cap-independent translation of the HCV poly-
protein from the 5' end of the plus strand RNA. Although
the minus strand 3'-terminal region has the antisequence
of the 5'-end of the plus strand, it doesn't fold into its mir-
ror image [27]. Several laboratories have shown that the
3'-terminal sequences of either strand RNA contributes
essential biological functions for viral replication [27-29].
We, therefore, hypothesized that the use of viral con-
structs from c¢cDNA or viral RNA in transfection experi-
ments will deprive the viral replication machinery from
the action of host cellular factors, like polypyrimidine-
tract binding protein, PTB [30,31] that was found to bind
a cis acting element at the 3'end of HCV for viral replica-
tion. In the present study, an alternative in vitro system to
test S-ODN antiviral function was made by utilization of
a well defined HCV inoculum from positive serum in
infection experiments to HepG2 cells. Native viral RNA
genomes containing the IRES components at the 5' end
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for efficient translation of viral polyprotein precursor and
intact PTB binding elements at the 3' end of the HCV
genome for efficient viral replication were expected to
provide a fairly natural intracellular system for HCV pro-
liferation. Several reports have shown that the infection
experiments in a variety of cells in culture were associated
with transient viral replication and minimal viral yield,
the in vitro system we describe here has been associated
with moderate viral load ~104viral copies per 10° HepG2
cells and prolonged viral replication as well as core and E1
expression for up to 130 days. Furthermore, culture media
of these infected cells were found to be highly infectious
to naive cells (results not shown), indicating successful
shedding out of infectious viral particles in cell surround-
ings.

Wide variability in the inhibitory potency of antisense S-
ODN targeted against several viral sequences has been
reported in a variety of in-vitro systems. The reasons for
the limited success with the use of S-ODN against specific
stem loop structures, particularly those constituting the
IRES elements, is that some of these stem loops form a
very stable secondary structures, so that the target motifs
for S-ODN contain up to 75% paired RNA nucleotides
[8,32] which may interfere with the inhibitory effect of S-
ODN. Furthermore, the biological significance of certain
stem loops in HCV translation is still not well understood.
Site directed mutagenesis of stem loop1 has been previ-
ously shown that sequence conservation within this
region is not essential for IRES activity [14]. In contrast,
stem loop I11d (264-282) was shown to contain the con-
served sequence, GGG triplet, which is essential for proper
IRES folding [33] and viral translation from the AUG start
site located at a distance. In the present study S-ODN
structures were designed against the two phylogenetically
conserved regions; the region comprising the AUG start
codon (S-ODN1) and stem loop IIId (S-ODN2). The
sequence data from local isolates revealed conservation at
specific motifs related to proper folding and efficient
translation i.e. Illd GGG (nucleotide 266-268) and AUG
start codon (nucleotide 340-342) respectively. These data
offer an advantage for antisense drugs to be a therapeutic
option for most known genotypes of HCV. Earlier studies
showed that IRES motifs were efficient targets for S-ODNs
on constructs containing the 5'-UTR alone or with subge-
nomic fragments of the virus linked to luciferase reporter
in either cell-free system [8] or HepG2 cells [8,11,24]. Our
results using cells infected with native viral genome
proved to be very sensitive for testing S-ODN inhibitory
activity on viral translation/replication. The antisense S-
ODNI1 and S-ODN2 completely inhibited viral replica-
tion at concentrations as low as 1 uM, whereas the use of
subgenomic construct in reticulocyte lysate showed inhi-
bition of translation at > 4 uM concentration of the same
S-ODN structures [8] The present in-vitro system is advan-
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tageous in the sense that the use of higher concentration
of S-ODN tend to be nonspecific for translation inhibi-
tion. The reason why the use of cell culture provides more
sensitivity for S-ODN concentrations than cell-free sys-
tems in this and in another study (8) is related to the trig-
gering of the intracellular RNAse H activity by the readily
formed RNA-DNA hybrid between viral 5'-UTR RNA and
S-ODN DNA molecules, a mechanism that facilitates
elimination of viral RNA by RNAse H degradation.

In the current studies we have not examined the specificity
of S-ODN,and S-ODN, on other viruses. A more reasona-
ble approach to understand specificity of these molecules
is to study their influence on expression of human consti-
tutive genes such as GAPDH. Our results indicated that
the S-ODN molecules under study are HCV specific with
no detectable inhibition on GAPDH mRNA levels. To
ensure biological safety of these molecules, studies of the
effect of these S-ODNs on other key genes such as those
involved in cell cycle and other major signaling pathways
need to be evaluated.

Recent studies focused on the use of RNA interference
(RNAI) as a new strategy against HCV showed similar suc-
cess to the antisense oligodeoxynucleotides treatment in
inhibiting viral replication in cell culture [34,35]. How-
ever for use of RNAI strategy in human patients several
major issues have to be addressed. These include poor sta-
bility of dsRNA in circulation, dsRNA-induced interferon
response resulting in shutting down general protein syn-
thesis, off-target effects of dsRNA, and because of the
exquisite sensitivity of RNAi strategy, generation of resist-
ant viruses (escape viruses) due to a single nucleotide
change in the target region [36]. Thus, we believe that
antisense strategy is more promising in combating HCV.

In summary, the results described in the present in-vitro
system indicated that S-ODNT1 has relatively more inhibi-
tory potency than S-ODN2, a finding that supports earlier
reports [30]. The results described herein also demon-
strate the establishment of an in vitro model for the repli-
cation of HCV Type 4; a major accomplishment in
studying HCV which may facilitates the development of
anti HCV therapeutics. Finally, the results also provide
evidence that antisense phosphorothioate oligonucle-
otides targeting stem loop I1Id and AUG translation initi-
ation site are effective inhibitors for viral replication and
represent potential prototype for treatment of HCV type 4
in liver pathology. Future direction will make use of
enhanced delivery strategy of the antisense oligodeoxynu-
cleotides by conjugation to arginine-rich peptides [37].
We have successfully used such an approach to show spe-
cific inhibition of growth factor (EGF) as well as phorbol
ester-mediated activation of MAP kinase and its phospho-
rylation of the transcription factor ELK in the nucleus
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[38]. Such approach may enhance the efficacy of the anti-
sense strategy in mediating the inhibition of HCV replica-
tion and thus eliminating the HCV as a dreadful disease
that is devastating the Egyptian population.
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