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Circulating tumor cells in precision 
oncology: clinical applications in liquid biopsy 
and 3D organoid model
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Abstract 

Circulating tumor cells (CTCs) are a rare subset of cells found in the blood of patients with solid tumors, which func‑
tion as a seed for metastases. Cancer cells metastasize through the bloodstream either as single migratory CTCs or as 
multicellular groupings—CTC clusters. The CTCs preserve primary tumor heterogeneity and mimic tumor properties, 
and may be considered as clinical biomarker, preclinical model, and therapeutic target. The potential clinical applica‑
tion of CTCs is being a component of liquid biopsy. CTCs are also good candidates for generating preclinical models, 
especially 3D organoid cultures, which could be applied in drug screening, disease modeling, genome editing, tumor 
immunity, and organoid biobanks. In this review, we summarize current knowledge on the value and promise of 
evolving CTC technologies and highlight cutting-edge research on CTCs in liquid biopsy, tumor metastasis, and orga‑
noid preclinical models. The study of CTCs offers broad pathways to develop new biomarkers for tumor patient diag‑
nosis, prognosis, and response to therapy, as well as translational models accelerating oncologic drug development.
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Introduction
Although cancer incidence rate is stable in women and 
declining by approximately 2% per year in men, and can-
cer death rate in women and men declined annually by 
1.4% and 1.8%, respectively, over the past decade [1], 
cancer remains the second leading cause of death glob-
ally and is responsible for an estimated 9.6 million deaths 
in 2018. Globally, approximately 1 in 6 deaths are due to 

cancer [2]. Limitations on the knowledge about cancer 
lead to high mortality. We routinely treat cancer patients 
with surgery, chemotherapy, and radiotherapy, ignoring 
inter- and intra-patient heterogeneity [3–6]. To address 
this issue, precision oncology is indispensable. Liq-
uid biopsy [7], also known as fluid biopsy or fluid phase 
biopsy has potential in analyzing the genomic landscape 
of patients with cancer, supervising treatment responses, 
monitoring minimal residual disease, and managing non-
invasive therapy resistance. Compared with traditional 
tissue biopsy, liquid biopsy is noninvasive and real-time. 
Blood samples are the most common materials for analy-
sis, which contain cell-free DNA (cfDNA) [8]; cell-free 
tumor DNA (ctDNA) [9]; vesicles(such as exosomes [10]) 
tumor-educated blood platelets (TEPs) [11] and circulat-
ing tumor cells (CTCs) (Fig. 1a). Other body fluids such 
as cerebrospinal fluid (CSF) [12]; saliva [13]; pleural effu-
sions [14]; urine [15] and stool [16] have shown captiv-
ity for diagnoses. CTCs play a vital role in precision 
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oncology (Fig. 1b) due to its characteristics of non-inva-
sion, real-time capability, and molecular heterogeneity.

As a seed for metastases, CTCs conserve tumor het-
erogeneity and mimic tumor properties, allowing them 
to be applied to therapeutic targets and clinical bio-
markers for disease screening, dynamic monitoring, 
and prognosis prediction. Moreover, a CTC-derived 
3D organoid model can be applied to screening tests of 
drug sensitivity [17] and analysis of multiplexed prot-
eomic of CTCs [18]. Thus, although limitations exist, 
development of CTC isolation and culture are nec-
essary for therapy, disease evolution, and real-time 
genomic characterization. In this review, we focus on 

the clinical applications of CTCs, especially in liquid 
biopsy and 3D organoid model.

Technologies for CTC isolation and identification
Circulating tumor cells (CTCs) with morphologic fea-
tures similar to the primary solid tumor were initially 
discovered by Thomas Ashworth [19] through an autopsy 
of a cancer patient 150 years ago. A number of scientists 
have demonstrated that CTCs can be used as a predic-
tor of clinical prognosis and treatment efficacy evaluation 
[20–23]. At first, scientists used the CellSearch system, 
which was the only device for CTC analysis approved 
by the United States Food and Drug Administration 
(FDA), to enrich and enumerate CTCs from peripheral 

Fig. 1  Basic introduction of the liquid biopsy approaches and applications of CTCs as liquid biopsy. a Liquid biopsy approaches involve peripheral 
blood, precardial effusion, stool, urine, ascites, pleural effusion, saliva and cerebrospinal fluid. Moreover, peripheral blood biopsy include isolation of 
circulating tumor cells(CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA(ctRNA) and exosomes. b Applications of CTCs as liquid biopsy 
in early diagnosis, prognosis prediction, and disease monitoring, molecular phenotyping, therapy response evaluation
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blood. Finally, researchers discovered that the enumera-
tion of CTCs is insufficient because variable phenotypes 
of CTCs in circulation have different potentials in tumor 
progress. Detailed developments [19, 24–30] in the his-
tory of CTCs are shown in Fig. 2.

Abnormal proliferation and metabolism of tumor cells, 
disorder and changes in the composition of cells, unnatu-
ral gene expression and modification, and synthesis and 
accumulation of polar particulate lead to changes in the 
physical and biological properties of CTCs. Scientists 
have developed technologies for enrichment, isolation, 
and identification of CTCs according to these physical 

and biological changes. The methods of technologies 
for CTC isolation from the review by Rubis [31], are 
referenced, but only the latest technologies are listed in 
Table 1. Methods to isolate CTCs developed rapidly with 
the emergence of the microfluidic chip system and nano-
technologies. Using engineered mouse models in can-
cer research, Hamza et al. [32] have solved the problem 
of having small total blood volume and rare CTCs using 
an optofluidic-based approach, eliminating confounding 
biases induced by inter-mouse heterogeneity. Antfolk 
et al. [33] have isolated breast cancer cells (MCF7) from 
peripheral blood with an efficiency of 91.8 ± 1.0% based 

Fig. 2  Milestones of CTCs development history

Table 1  CTCs isolation, enrichment, and identification technologies

Category Strategy Technology/device Refs

Biological properties Surface marker detection Ferrofluids coated to EpCAM/CellSearch® [81]

Magnetic beads coated to EpCAM + MUC1/AdnaTest® [111]

EpCAM-coated wire for in vivo isolation/CellCollector™ [112, 113]

CD45+ depletion [114]

Surface marker detection combined microfluid Microposts or channels coated to EpCAM/CTC-Chip/HB-Chip [25, 102]

FICOLL and EpCAM-based microfluidic device/Isoflux® [115]

Glycan-affinity microfluidic devices [35]

Physical properties Size-based enrichment ISET® [116]

Density-based OncoQuick® [117]

Centrifugal force-based cascaded microfluidic device [34]

Acoustophoresis-based Acoustofluidic [33]

Nanorough polystyrene substrates adherence-based Nanostructured polystyrene well plates [118]

Deformability-based JETTATM [119]

Optofluidic-based Optofluidic real-time cell sorter [32]

Dielectric-based DEP [120]

DEP-LFFF [121]

DEP Array [122]

Functional assays Invasive capacity VitaAssay™ [123]

Protein release during culture EPISPOT assay [124]

Telomerase expression TelomeScan® [125]
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on an integrated acoustophoresis-based rare-cell enrich-
ment system combined with integrated concentration. 
Abdulla et al. [34] have introduced a cascaded microflu-
idic device that can separate 80.75% of human lung can-
cer cells (A549) and 73.75% of human breast cancer cells 
(MCF-7) from the human whole-blood system based on 
their physical properties within 20 min with a cell viabil-
ity of 95% and 98%, respectively. Neves et  al. [35] have 
constructed a glycan affinity-based microfluidic device 
for selective isolation of membrane protein O-glycan 
sialyl-Tn antigen (STn +), which are more sensitive than 
size-based microchips for CTC detection and are clini-
cally relevant with metastasis in bladder and colorectal 
tumors. To conclude, technologies for enrichment, iso-
lation, and identification of CTCs according to physical 
and biological changes both have limitations, such as low 
purity, low cell viability, and low intermediate through-
put. It is urgent to integrate the best of these technologies 
to generate a new approach that yield high throughput 
and high purity. With the emergence of numerous tech-
nologies and platforms for isolating and further analyzing 
CTCs, physicians have realized the importance of CTCs 
as liquid biopsy and therapeutic target.

Clinical application of CTCs
Circulating tumor cells as a therapeutic target
As previously mentioned, CTCs are responsible for 
tumor metastasis. Furthermore, considering that most 
deaths induced by cancer are due to metastasis [36], a 
new cancer therapy that considers CTCs as a target is 
envisioned by scientists. Thus, the disruption of cancer 
cell dissemination would represent a powerful thera-
peutic strategy. However, owing to the lack of technical 
evaluation of the effects of CTC elimination in vivo, most 
studies assume that removing CTCs could radically pre-
vent tumor metastasis. To address this condition, Kim 

et  al. [37] have transplanted green fluorescent protein 
(GFP)-expressing CTCs into mice, applied photody-
namic therapy to specifically clear GFP-expressing CTCs, 
appraised the therapeutic efficacy of CTC elimination, 
and finally demonstrated that elimination of CTCs could 
prevent metastasis and prolong the survival term of the 
tumor-bearing mice.

In recent years, Rana et al. [38] have established a selec-
tin-based implantable shunt device based on the molec-
ular mechanisms involved in CTC extravasation. The 
device is a microtube decorated with E-selectin mole-
cules and tumor necrosis factor-related apoptosis-induc-
ing ligand (TRAIL) in its surface to guide CTC rolling 
and the eventual tumor cell apoptosis. The application of 
TRAIL therapy into solid tumors is restrictive on account 
of TRAIL resistance. Phipps et al. [39] demonstrated that 
after separation from the extracellular matrix, TRAIL-
resistant cancer cells became more sensitive. Further-
more, in the study by Mitchell [40], tumor cells showed 
enhanced sensitivity to TRAIL when exposed to fluid 
shear stress.

To conclude, CTCs, as a seed for metastasis, could be 
an effective therapeutic target toward limiting its recir-
culation in the blood, slowing its expansion to second-
ary lesions, and relieving overall tumor burden in cancer 
patients after the resection, radiation, or chemotherapy 
of a primary neoplasia. With an extensive study of the 
dynamics and mechanisms of CTC recirculation, a new 
therapeutic method tailored to oppose tumor seeding for 
advanced tumor patients is promising [31, 41].

Circulating tumor cells in liquid biopsy
Prognosis prediction
The detection of CTCs should focus on identifying sub-
populations of CTCs resulting in tumor metastasis 
because of the heterogeneous properties of CTCs [28, 

Table 2  Summary of studies on CTCs in precision medicine

Category Proposed functions Representative genes Refs

Oncogene validation Epithelial mesenchymal transition (EMT) TGFβ1, SNAIL1 [126, 127]

Metastasis FABP, CEACAM5 [128]

Stem cell phenotype CD24, CD44, CD133, ALDH1 [127]

Cell proliferation RRM1, MAPK14 [126]

Targeted therapy Changing biomarker HER2, EGFR [129, 130]

Signaling pathway AKT1, AKT2, PIK3R1, PTEN [131]

Drug screening Biomarkers of therapeutic resistance RAS, BRAF (colorectal cancer) [132]

AR (prostate cancer) [30]

Biomarkers of drug sensitivity ER (endocrine therapy) [133]

ERCC1 (chemotherapy) [134]

PD1 (immune therapy) [48]
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42]. Moreover, learning the molecular and biological fea-
tures of CTCs can guide clinical decision-making. Miy-
amoto et al. [43] have used microfluidic cell enrichment 
followed by digital quantitation of prostate-derived tran-
scripts to predict metastasis and prognoses; they sug-
gested that monitoring CTC-specific transcripts using 
this technology can guide clinical therapeutic selection 
in both malignant and regional prostate cancer. A sec-
ondary analysis of a randomized clinical trial has shown 
that the positive CTC assay of patients suffering from 
hormone receptor–positive breast cancer provided inde-
pendent prognostic outcomes for late clinical recurrence, 
thereby indicating that CTCs may be used to predict late 
recurrence and guide therapy [44]. Importantly, a further 
step for the clinical application of CTCs in other carcino-
mas requires extensive validation.

Early diagnosis
Several lines of evidence suggest a crucial role of CTCs as 
a seed for metastases; thus, available data suggest CTCs 
as a biomarker for early diagnosis. Fan et  al. [45] have 
designed a CTC panel to investigate the clinical value of 
circulating tumor cells for diagnosis in hepatitis B virus-
related hepatocellular carcinoma. The panel showed 
prominent performance in early diagnosis and differ-
ential diagnosis from liver cirrhosis, chronic hepatitis B 
infection, and benign hepatic lesion. The area under the 
curve (AUC) of the CTC panel was 0.88 in training set 
and 0.93 in validation set. Recently, Zhou et al. [46] have 
demonstrated that folate receptor positive circulating 
tumor cells (FR+-CTCs), in combination with maximum 
tumor diameter (MTD), are reliable methods for deter-
mining whether small-sized solitary pulmonary nodules 
(SPNs) are invasive tumor or not. To conclude, CTCs 
may have promising beneficial effects in early diagnosis 
of tumor and may be relevant from the aspect of metasta-
sis prevention.

Molecular phenotyping
PD-L1 antibody is an emerging anti-tumor regimen with 
less toxicity and long-term effects for a number of can-
cers such as non-small-cell lung cancer [47]. Mazel et al. 
[48] have demonstrated that the expression of PD-L1 
highly increased on CTCs obtained from patients with 
hormone receptor-positive, HER2-negative breast can-
cer. CTC/PD-L1 analysis might be applied to patients 
with immune checkpoint blockade as immunoscores 
because PD-L1 expression categorizes different subsets 
of CTCs [49].

Dynamic evaluation
CTCs could be an independent indicator for evaluat-
ing tumor invasiveness and guiding clinical treatment 

because recurrence and metastases are hallmarks of 
cancer. Scher et  al. [50] have used CTCs for therapy 
response evaluation in patients undergoing castration-
resistant prostate cancer. The patients were randomly 
divided into abiraterone acetate plus prednisone and 
prednisone-alone groups. Moreover, the biomarkers were 
measured at baseline and at 4, 8, and 12 weeks. Results 
proved that CTC enumerations can be used for real-time 
therapy evaluation. Further trials are ongoing to validate 
the findings. Li et  al. [51] have identified that the CTC 
levels after therapy may be used to evaluate therapeutic 
response and predict poor prognosis in advanced gastric 
cancer (AGC). They enumerated the newly diagnosed 
AGC patients’ CTCs as baseline and evaluated the first 
response after treatment by CellSearch in 136 patients. 
Moreover, they have chosen 15 appropriate patients and 
enumerated the CTCs during the entire treatment for a 
longitudinal study. In 2019, Balakrishnan et al. [52] have 
found that chemotherapy induced CTC cluster formation 
in blood samples indicate disease progression and shorter 
overall survival. To conclude, these studies may lead to a 
better understanding of the clinical application for CTCs 
on dynamic evaluation. To conclude, these studies may 
improve our understanding of the clinical application of 
CTCs in dynamic evaluation.

CTC‑derived 3D organoid model
CTC-derived pre-clinical model consists of 2D cultures, 
spheroid generation, 3D organoid generation, and CTC-
derived explant (CDX) model, which is an in vivo model 
compared with other mentioned models. The previ-
ous work of our group [53] have summarized that the 
3D organoid model has advantages of stable morphol-
ogy, gene expression and cell signaling, equal behavior 
and heterogeneity with cancer cells in the tumor mass, 
high-throughput for drug screening, low cost, and easy 
operation “in a dish” [54–58]. Moreover, organoids could 
mimic cancer hypoxia microenvironment. Thus, in this 
review, applications of organoid technologies in precision 
medicine are discussed in detail (Fig. 3).

Development of CTC‑derived 3D organoid model
Organoids are miniscule models of tissues that grow in a 
3D semisolid extracellular matrix medium with specific 
growth factor supplied [59, 60]. In the 1980s, Bissell et al. 
[61] developed 3D cultures and illustrated how extracel-
lular matrix (ECM) affects gene expression in the breast. 
In 1990, her group further found that various ECMs play 
an important role in maintaining the morphology and 
function of murine mammary cells [62]. In 2007, Bissell 
et al. [63] proposed two procedures for 3D culture of nor-
mal and malignant human mammary cells. Formation of 
an organoid with single epithelial cells needs 7–10  days 
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and the formed organoid can be separated into single 
cells to initiate a new organoid. This long-term organoid 
culture technology was first developed by Sato et al. [59], 
who cultured mouse small intestinal crypts in stable 
media condition for growth and finally established the 
mini-gut culture system. Subsequently, this technology 
was widely used in other organs including colon, lung, 
prostate, stomach, liver, pancreas, and breast for molecu-
lar research and drug screening [60, 64–68].

As CTCs are rare in blood, establish of CTCs-derived 
3D organoid model are late. Zhang et  al. [69] isolated 
CTCs from the peripheral blood of patients with breast 
cancer, cultured them in  vitro, and finally developed 
CTCs lines. Moreover, they found that CTC lines main-
tained the characteristic of brain metastatic breast can-
cer (BMBC) were seriously invasive and metastatic. 
In 2014, Zhang et  al. [70] have successfully designed a 

three-dimensional (3D) co-culture model for better iso-
lating and culturing CTCs. After capturing CTCs from 
patients’ blood sample through a CTC-capture chip, 
they introduced fibroblasts and extracellular matrix 
(ECM) to the same chip to establish a co-culture envi-
ronment, which could simulate a tumor microenviron-
ment to support tumor development. Furthermore, it has 
been confirmed that CTCs in 3D co-culture model had 
matched mutation with the primary cancer, which could 
be applied into clinical application for evaluation of dis-
ease progress. Collectively, with the isolation and culture 
technology for CTCs evolution, CTCs-derived 3D orga-
noids model will be widely used in clinical.

Potential application of CTC‑derived 3D organoids
Disease modeling  Cancer progression is a multi-step 
accumulation process, such as angiogenesis, metastasis, 

Fig. 3  Basic introdction of CTCs-derived organoid in precision medcine
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and drug resistance, leading to difficulties in screening 
pathogenic gene events with specific stages in carcino-
genesis. Organoids have a potential to model cancer 
and identify driver genes due to the convenient manip-
ulation of retroviruses, inhibitors, and CRISPR/Cas9 
approaches [58, 68, 71]. In 2015, Drost et al. demonstrated 
that organoids with triple mutations (APCKO, TP53KO, 
and KRASG12D) showed slower growth than those with 
quadruple mutations (APCKO, TP53KO, KRASG12D, and 
SMAD4KO) within immuno-deficient mice injected with 
intestinal organoid model [58]. In 2017, Fumagalli et al., 
using the same model, proved that the subsequent muta-
tion of oncogenes (APCKO, TP53KO, KRASG12D, and 
SMAD4KO) promoted primary tumor growth, migra-
tion, and metastasis after orthotopic transplantation of 
organoids [71]. As CTCs could be obtained using a non-
invasive method, it is easy to build a biobank for patients. 
Thus, in establishing biobanks of multiple organoid lines 
in different stages of same patients, CTC-derived orga-
noids can help monitor metastatic progression.

Drug discovery  CTC-derived models that contain 
pathologies of patients are crucial for screening specific 
drugs. In 2014, Hodgkinson et  al. [72] demonstrated 
that CTCs derived from patients with small-cell lung 
carcinoma mirrored the patient’s response to platinum, 
and etoposide treatment implied that CTC-derived 
explants could be applied in supervising the dynamic 
patterns of a tumor’s drug susceptibility and screening 
new therapeutic targets. In 2016, Boehnke et  al. [73] 
successfully applied patient-derived colorectal cancer 
(CRC) organoids to high-throughput screening and 
drug discovery. In 2018, Sachs et al. [64] demonstrated 
that organoid lines generated from patient samples 
could be exploited to formulate a standard of care for 
different breast cancer subtypes. Therefore, various 
studies significantly showed the immense potential of 
organoid technology in revealing the molecular basis of 
drug response.

Precision medicine  A new concept in managing treat-
ment programs, precision medicine considers indi-
vidual differences of genes and environment  (Table  2) 
[74]. In 2015, Van de Wetering et al. [75] reported that 
porcupine, a small molecule inhibitor of Wnt secretion, 
was viable only in a patient-derived organoid line with a 
mutation in the Wnt feedback regulator RNF43, imply-
ing the drug sensitivity in a subset of RNF43 mutation 
CRC patients. In 2017, Zhang et al. [76] proposed that 
CTC-derived organoid was useful in forecasting the 
therapeutic response to specific ALK inhibitors (ceri-
tinib and crizotinib). In conclusion, CTC-derived orga-
noids are available for drug screening based on the most 

recent genetic profiling, thereby settling the problem of 
drug resistance and invalid treatment.

Genome editing  CRISPR/Cas9, a technique that uti-
lizes the mechanism of innate bacterial defense against 
bacteriophages, has been widely used in various fields of 
molecular biology since 2012. The indispensable roles of 
the combination of CRISPR and organoids focusing on 
the exploration of human tumorigenesis, heterogeneity, 
and metastasis have been summarized in the previous 
review [53].

Tumor immunity  Recently, cancer immunotherapies, 
such as CTLA-4 and PD-1/PD-L1, have sparked intense 
debate and research because of their substantial clinical 
benefits for advanced cancer patients. Dijkstra et al. [77] 
have established and confirmed a platform that culture 
autologous tumor organoids together with peripheral 
blood lymphocytes to evaluate and stimulate tumor-spe-
cific T cell responses to epithelial cancers. They have dem-
onstrated that the value and novelty of this platform is to 
isolate tumor-reactive T cells and evaluate the therapeutic 
effect of T-cell-mediated attacks for the first time. Ulti-
mately, with the improvement in success rate, this plat-
form brings a bright prospect for patients with advanced 
cancer.

CTCs and tumor metastases
The motility and invasiveness of tumor cells initiate the 
onset of metastatic procedure [78], which consists of 
the steps: cancer cells separate from the primary tumor, 
seed in the blood circulation, sustain in circulation, 
extravasate into distant organs, and locate at secondary 
sites (Fig.  4a). Thus, finding CTCs in circulation indi-
cates metastasis and poor prognoses in cancer patients 
[79–84]. However, not all CTCs are metastatic, since 
most of the CTCs in the circulation are degraded due to 
their half-life. Stott et al. have reported that the number 
of CTCs of 75% localized prostate cancer patients with 
preoperative CTCs declined precipitous after operation 
(< 24 h), which suggested a short half-life for CTCs in the 
blood circulation [85]. Here, two debate questions are 
discussed.

Motility and mobility
Cancer metastasis has been correlated with genomics, 
transcriptomics, proteomics, and metabolomics [86–90]. 
However, the metastatic procedure of CTCs entering the 
blood circulation through an active course, passive pro-
cess, or both, remains unclear [91]. In this review, we 
introduce the terms motility and mobility to describe 
the different procedures of tumor cell migration. Motile 
cancer cells move on their own because they have gained 
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the abilities to seed in the extracellular matrix, under-
mine basement membranes, and penetrate and evade the 
vascular wall. The active invasive processes are based on 
the change of cell morphology, position, and surround-
ing tissue [92]. Mobile cancer cells are pushed by exter-
nal forces dragging and pushing them out of place [93, 
94]. Two probable mechanisms of passive dissemination 
of tumor cells are generalized: first, angiogenesis is one 
of the hallmarks of cancer by secretion of the vascular 
endothelial growth factor (VEGF), providing nutrients 
and oxygen for tumor growth. The junctions of neonatal 
vascular endothelial cells are loose and together with the 
pushing of tumor during growth result in tumor cell leak-
age [95]. Second, tumor cells may be passively following 
the route that was created by other tumor cells through 
proteolysis [96].

Single cell and CTC cluster
Epithelial-to-mesenchymal transition (EMT) was 
debated as a way that initiates metastasis [97]. Alter-
native hypotheses have been proposed to illustrate 
the initiation of tumor metastasis from 1976 [98]. By 
using multiple technological platforms, Aceto and 
other researchers [99–103] identified 2–50 cancer cell 
clusters of CTCs from patients with metastatic epi-
thelial cancers (Fig.  4b). Furthermore, in 2014, Aceto 
et al. [104] first demonstrated that CTC clusters gener-
ate from oligoclonal tumor cell groupings rather than 
from aggregating in the blood vessel. The number of 
CTC clusters are less than single CTCs, but metastasis 
is 23–50 times more potent than single CTCs. Aceto 
et  al. [104] certified that plakoglobin-dependent inter-
cellular adhesion promoted CTC clusters originating 
from connected multicellular groupings, and although 
less in number, these clusters largely contributed to 

Fig. 4  a Basic metastases process of CTCs and CTCs clusters. b CTC clusters seeding in blood. c Individual CTCs aggregation in blood
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the metastatic spread of cancer. In 2016, Cheung et al. 
[105] examined how polyclonal metastases form, and 
demonstrated that cancer cells transferred to distant 
organs as cohesive clusters composed of two molecu-
larly distinct subpopulations with a variable ratio 
during metastasis. Moreover, the researchers identi-
fied that the mechanism for CTC cluster metastasis is 
related to keratin 14 + (K14+), which could regulate 
cell–cell adhesion, cell–matrix adhesion, and immune 
evasion. In 2019, Aceto and his colleagues [106] further 
found, based on their previous studies, that the binding 
sites of transcription factor for stemness and prolifera-
tion, including OCT4, NANOG, SOX2, and SIN3A are 
exactly hypomethylated in CTC clusters, and the biol-
ogy of CTC clusters are analogous with that of embry-
onic stem cells. The researchers have confirmed this by 
profiling the difference of DNA methylation landscape 
between single CTCs and CTC clusters in breast cancer 
patients and mouse models on a genome-wide scale. 
Moreover, they identified Na +/K+ ATPase inhibi-
tors from 2486 FDA-approved compounds to dissoci-
ate CTC clusters into single cells. Consequently, DNA 
methylation of transcription factor was remodeled 
at critical sites and the metastasis of tumor was sup-
pressed. Finally, Aceto and his colleagues [106] evalu-
ated the therapeutic effect of Ouabain after 3 weeks of 
treatment. Although the reduction of CTC clusters in 
mice blood with breast cancer led to a single increase in 
the number of circulating tumor cells, the total trans-
fer in mice burden was reduced 80.7 times, 98.8% less 
than that in the control group, and prevented the for-
mation of new metastases. Furthermore, Aceto pointed 
out that circulating tumor cell clusters are an important 
pathway for breast cancer metastasis, and the discovery 
of the first anti-circulating tumor cell cluster therapy 
may provide a powerful new tool to help treat millions 
of women currently living with this potentially fatal 
disease.

Interestingly, in contrast to Aceto and Cheung, Liu 
et  al. [107] proposed by using intravital multiphoton 
microscopic imaging that CTC clusters were formed 
by a single tumor aggregation within the blood vessel 
rather than from communally migrating cell groups. 
This finding was confirmed by inoculating cancer cells 
into veins at different times. Additionally, the research-
ers revealed that CTC cluster aggregation was attrib-
uted to the interactions of homophilic CD44 and 
subsequent CD44-PAK2 interactions (Fig. 4c).

Further questions emerge from the three different 
studies. First, two mechanisms of the formation of CTC 
clusters exist simultaneously; thus, knowing which 
accounts for a major portion is essential to scientists 
in developing countermeasures against metastasis. 

Moreover, plakoglobin, keratin 14+, and CD44 are 
both involved in CTC aggregation, and whether they 
regulate tumor metastases in a separated or coordi-
nated manner remains a question.

Limitations and outlook
Although CTCs enable a non-invasive and dynamic 
analysis of cancer progress, limitations remain. First, 
CTCs are rare and extremely varied in different types of 
tumors. Similarly, various CTC detection methods have 
different boundaries of CTC enumeration to separate 
patients from the healthy group. To address this issue, the 
emerging microchip-based devices enable a high isola-
tion efficiency and detection sensitivity of CTCs due to 
combination of microfluidic-based isolation techniques 
with nanomaterial-based detection systems into a single 
automatic platform.

Second, the heterogeneous nature of CTCs and recent 
research [28, 42] show that only certain subgroups of 
CTCs are capable of metastasis, and current information 
for detecting and identifying certain subpopulations are 
limited. Current techniques are already capable of down-
stream analysis of the released CTCs through culture 
expansion and single-cell analysis; thus, molecular phe-
notypes and biological features profiles might assist clini-
cal diagnosis and treatments. In the future, CTC utility 
can be expanded to monitoring of immune responses of 
immune checkpoint or vaccination therapies, which can 
accelerate the translation of CTC research in the upcom-
ing era of cancer immunotherapy.

Finally, CTC-derived 3D organoids are still character-
ized by limitations, such as lack of immune system, vas-
cularization, and fibroblasts. In addition, these organoids 
cannot entirely recapitulate interactions at the tissue 
level in the human body and therefore cannot determine 
the rate-limiting organ toxicity of drugs [108]. However, 
microfluidic technology may be able to achieve co-cul-
ture of organoids and other cell types, such as immune 
cells, to imitate in  vivo tumor microenvironment [109]. 
Further exploration is needed on whether CTC-derived 
organoids capture the complete heterogeneity of the 
carcinoma.

Conclusion
CTCs have different physical and biological proper-
ties from peripheral blood cells, which can be used to 
develop new technologies for isolating, identifying, and 
relieving CTCs in high throughput. As techniques and 
methods evolve, translating fundamental research into 
clinical application can be expected. CTCs can be applied 
in liquid biopsy in early diagnosis, prognosis prediction, 
disease monitoring, molecular phenotyping, and therapy 
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response evaluation. Moreover, metastasis begins with 
CTCs shedding from the primary tumor into the periph-
eral circulation. Recently, Klotz et al. [110] have cultured 
CTCs derived from patients with metastatic luminal 
breast cancers ex  vivo. Intriguingly, a subset of them 
could adapt and grow in the brain. Therefore, therapies 
targeting CTCs can potentially reduce metastasis.

Moreover, the CTC-derived 3D organoid model plays 
a vital role in precision oncology because it can conserve 
tumor heterogeneity, imitate the cancer microenviron-
ment, and maintain cancer oncogenesis and metastasis. 
This could gradually replace tissue biopsies which are 
painful and may be difficult to operate depending on the 
tumor location. To conclude, CTCs present a new dimen-
sion and horizon for clinical doctors in diagnosis, prog-
nosis, prediction, treatment, disease mechanism, and 
drug development.
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