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Elevated TNFRSF4 gene expression 
is a predictor of poor prognosis in non‑M3 acute 
myeloid leukemia
Siyu Gu1, Jie Zi1, Qi Han1, Chunhua Song2 and Zheng Ge1* 

Abstract 

Background:  We used bioinformatic tools to dichotomize 157 non-M3 AML patients from the TCGA dataset based 
on the presence or absence of TP53 mutations, and screened out a key gene related to TP53 mutation for future 
analysis.

Methods:  DEGs were analyzed by R package “DESeq2” and then run GSEA, GO enrichment, KEGG pathway and PPI 
network. Hub genes were selected out according to MCC. Log-rank (Mantel–Cox) test was used for survival analysis. 
Mann–Whitney U’s nonparametric t test and Fisher’s exact test was used for continuous and categorical variables 
respectively. p value< 0.05 was considered to be statistical significance.

Results:  TNFRSF4 was final screened out as a key gene. Besides TP53 mutation (p = 0.0118), high TNFRSF4 was also 
associated with FLT3 mutation (p = 0.0102) and NPM1 mutation (p = 0.0024). Elevated TNFRSF4 was significantly 
related with intermediate (p = 0.0004) and poor (p = 0.0011) risk stratification as well as relapse statute (p = 0.0099). 
Patients with elevated TNFRSF4 expression had significantly shorter overall survival (median survival: 2.35 months vs. 
21 months, p < 0.0001). Based on our clinical center data, TNFRSF4 expression was significantly higher in non-M3 AML 
patients than HDs (p = 0.0377) and MDS patients (EB-1, 2; p = 0.0017).

Conclusions:  Elevated TNFRSF4 expression was associated with TP53, FLT3 and NPM1 mutation as well as poor clinical 
outcome. TNFRSF4 expression was significantly higher in non-M3 AML patients than HDs and MDS (EB-1, 2) patients. 
TNFRSF4 is need for future functional and mechanistic studies to investigate the role in non-M3 AML.
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Background
Acute myeloid leukemia (AML) is a heterogenous and 
hematologic malignant disease which is characterized 
by infiltration of the bone marrow, blood, and other 
tissues by proliferative, clonal, abnormally differenti-
ated, and occasionally poorly differentiated cells of the 

hematopoietic system [1]. Abnormal accumulated blasts 
replace the normal hematopoietic tissue and trigger 
out cytopenia [2]. With the advance of microarray and 
next-generation sequencing, recognition of the molecu-
lar heterogeneity of AML has enormously increased [3, 
4]. However, current understanding of the molecular 
mechanisms underlying the development and progres-
sion of AML is limited, and early diagnosis remains dif-
ficult, which may lead to treatment delays. Therefore, 
the identification of key mechanisms regulating AML 
management and patient survival may contribute to the 
development of AML specific targeted therapies.
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Since 1989, TP53 has been identified as a tumor sup-
pressor gene [5], which encodes tumor suppressor p53 
protein regarded as “guardian of the genome” that plays 
an important role in maintaining genome stability under 
cellular stress, and participating in various processes 
of development, differentiation, aging, and disease [6, 
7]. TP53 mutations account for ~ 10% of de novo AML 
patients [8], 20–37% of secondary AML, therapy-relate 
AML patients [9] and 60% of complex karyotype patients. 
TP53 mutations are also increasingly common appear-
ance in relapsed or refractory AML cases which predicts 
poor clinical outcome [10, 11].

Tumor necrosis factor receptor superfamily member 
4 (TNFRSF4), as known as OX40 or CD134 is expressed 
primarily on activated T cells [12]. TNFRSF4 can acti-
vate the NF-kappa-B pathway by mediating TRAF2 and 
TRAF5 [13]. The PI3K/PKB and NFAT pathway also have 
been identified as the downstream of TNFRSF4 [12, 14]. 
The most remarkable function of TNFRSF4 is to enhance 
division, proliferation, survival and cytokine production 
of T cells by activating the pathways described above. 
Series researches have investigated that TNFRSF4 as a 
therapeutic agent plays a significant role in immunother-
apy of preclinical tumor models [15–17].

It has been found that TP53 mutations promote the 
immunogenicity of breast cancer, and elevated TNFRSF4 
expression is also associated with TP53 mutations [18]. 
On the other hand, TNFRSF4 expression in CD8-posi-
tive (CD8+) T cells and Tregs is significantly increased 
in relapsed AML patients compared with healthy donors 
(HDs) [19]. We analyzed the differentially expressed 
genes (DEGs) function or pathways between TP53-
mutated and TP53-wildtype non-M3 AML based on the 
Cancer Genome Atlas (TCGA) transcriptome data [3]. 
TNFRSF4 was finally screened out as a key gene associ-
ated with poor clinical outcome. In addition, based on 
our clinical center data, we validated TNFRSF4 expres-
sion level of non-M3 AML patients was significantly 
higher than that of HDs and Myelodysplastic syndrome 
(MDS) Excess blasts (EB)-1,2 patients. Furthermore, the 
expression level was positive related with the percentage 
of bone marrow blasts after combined with MDS patient 
data.

Methods
Patient datasets
Complete clinical data and RNA sequence data of 157 
newly diagnosis adult non-M3 AML patients obtained 
from TCGA dataset [3] downloaded from cBioPortal 

(https​://www.cbiop​ortal​.org) including normalized 
Z-score data and median expression data [20]. Z-score 
indicates the number of standard deviations away from 
the mean of expression in the reference population. 
The subtypes which were classified according to the 
French–American–British (FAB) classification systems 
in which M3 subtype was removed from present research 
considering the unique attributes [21]. The risk group 
stratification was according to National Comprehensive 
Cancer Network (NCCN) guidelines. Patients included 
in the study were assessed for the most frequently 
found somatic mutations in AML, such as FLT3, NPM1, 
IDH1/2, and TET.

Approval of the code of ethics and consent to participa-
tion are not necessary because all data is public to iden-
tify and all datasets analyzed in this study were available 
from cBioportal.

DEGs analysis
Patients were dichotomized based on the presence and 
absence of TP53 mutation. DEGs were filtrated by R 
package “DESeq2” [22]. The screening condition was to 
satisfy both log2FoldChange(log2FC) > 1 or < −  1, and 
adjusted p value < 0.05. All genes were visualized using 
volcanic map plotted by R package “ggplot2” [23].

KEGG, GO and GSEA analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis and Gene Ontology (GO) enrichment 
analysis were performed using Database for Annotation, 
Visualization and Integrated Discovery (DAVID https​://
david​.ncifc​rf.gov) online tool [24]. False discovery rate 
(FDR) < 0.05 was considered to indicate a statistically sig-
nificant difference.

All genes were performed Gene set enrichment analy-
sis (GSEA) with a cut off nominal p value< 0.05 and 
FDR < 0.10. The reference gene set from the Molecular 
Signatures Database (MSigDB) of c6, the oncogenic sig-
natures which were generated directly from microarray 
data from National Center for Biotechnology Informa-
tion Gene Expression Omnibus or from internal unpub-
lished profiling experiments involving perturbation of 
known cancer genes [25].

Protein–protein interaction (PPI) network analysis
Proteins and their functional interactions networks 
of selected enrichment genes were acquired from the 
STRING database (https​://strin​g-db.org) [26]. Genes with 

https://www.cbioportal.org
https://david.ncifcrf.gov
https://david.ncifcrf.gov
https://string-db.org
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minimum interaction score more than 0.4 were selected 
to visualize in Cytoscape which is an open source soft-
ware project to integrate biomolecular interaction net-
works with high throughput expression data and other 
molecular states into a unified conceptual framework 
[27]. We utilized CytoHubba plug-ins for ranking nodes 
in a network by their network features with the Maximal 
Clique Centrality (MCC) methods. Wayne diagram  was 
produced by webtool Bioinformatics & Evolutionary 
Genomics (http://bioin​forma​tics.psb.ugent​.be/webto​ols/
Venn/) to overlap genes.

Clinical patients and reverse transcribed quantitative PCR 
(RT‑qPCR)
To analyze the mRNA expression of TNFRSF4 in human 
bone marrow cells (BMCs), We collected non-M3 de 
novo AML patients, MDS (EB-1, 2) and HDs from our 
clinical center. The written informed consents were pro-
vided by all the patients in accordance with the Declara-
tion of Helsinki before enrollment in the study.

The total RNA was isolated by Trizol (Invitrogen, USA), 
and was reverse transcribed into cDNA using the Prime-
Script™ RT Master Mix (Perfect Real Time) (TaKaRa, 
Dalian, China). RT-qPCR was performed using TaKaRa 
SYBR Supermix (TaKaRa, Dalian, China) on a StepOne 
Plus analysis system (Applied Biosystems, Foster City, 
CA, USA). The amplification conditions were as follows: 
pre-denaturation (95 °C for 30 s), 40 cycles of denatura-
tion (95 °C for 30 s), and annealing and extension (60 °C 
for 34  s). The primers were designed and synthesized 
with the following sequences:

sense, 5′-ACA​ACG​ACG​TGG​TCA​GCT​CCAA-3′,
antisense, 5′-CAG​CGG​CAG​ACT​GTG​TCC​TGT-
3′(TNFRSF4);
sense, 5′-GTA​ACC​CGT​TGA​ACC​CCA​TT-3′,
antisense, 5′-CCA​TCC​AAT​CGG​TAG​TAG​CG-3′ 
(18 s RNA).

The relative expression levels of the target genes were 
calculated by the comparative Ct method presented as 2−
ΔCt. The experiments were conducted in triplicate.

Statistical analysis
All data were analyzed with the IBM SPSS statistics 26 
and GraphPad Prism 8 software. Log-rank (Mantel–Cox) 

test was used to compare Overall survival (OS) and dis-
ease free survival (DFS) between patients with Z ≥ 0 
(high) and Z < 0 (low) TNFRSF4 expression. Addition-
ally, Kaplan–Meier survival curves were generated for 
patients with Z ≥ 0 and Z < 0 TNFRSF4 expression after 
stratification by FAB classification, risk stratification, 
age, cytogenetic status, transplant status, TP53, FLT3, 
NPM1 and RUNX1 mutation status. Mann–Whitney U’s 
nonparametric t test and Fisher’s exact test was used for 
continuous and categorical variables respectively. Spear-
man rank correlation was used to analyze the correlation 
between TNFRSF4 and bone marrow blasts. p value< 0.05 
was considered to be statistical significance, and all sta-
tistical methods were list in Additional file 1: Table S1.

Results
DEGs analysis
The present study was conducted as a multiple strategy 
to select hub genes correlated with TP53 mutation from 
TCGA non-M3 AML patient dataset for further analysis 
(Fig. 1a). Patients were divided into TP53 mutation and 
TP53 wild type groups. 1449 DEGs were screened out 
by R package “DESeq2” and displayed in a volcanic map 
(Fig. 1b).

KEGG and GO enrichment analysis
DEGs were conducted the KEGG as well as GO bio-
logical process enrichment analysis and the cytokine–
cytokine receptor interaction pathway (p = 8.26E−10, 
FDR = 1.08E−06) and the immune response pathway 
(p = 2.53E−13, FDR = 4.68E−10) were screened out 
respectively (Fig. 1c, d).

GSEA analysis
GSEA with the advantage of analyzing the genes obtained 
in the TCGA dataset instead of the DEGs. The IL15 
signaling pathway was final screened out (NES = 1.81, 
p < 0.0001, FDR = 0.08, Fig.  1e). We next utilized the 
Wayne diagram and found 5 same genes, TNFRSF4, 
TNFRSF9, CCL4, LIF and IL18RAP by overlapping DEGs 
from cytokine–cytokine receptor interaction pathway, 
immune response pathway and the IL15 signaling path-
way (Additional file 2: Figure S1A).

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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PPI network
In order to find the hub genes, we performed the PPI 
analysis of the DEGs from 3 most significant path-
ways aforementioned utilized the “String” website 
tool (Fig.  2a–c). Then we imported PPI networks into 
Cytoscape plug-ins to rank nodes and found out the can-
didate genes (Fig. 2d–f). We listed the 15 candidate genes 
of each pathways (Additional file  1: Table  S2) by using 
CytoHubba plug-ins from Cytoscape software, and then 
screened out TNFRSF4 by overlapping candidate genes 
from each pathway (Fig. 2g).

TNFRSF4 expression in bone marrow simples
We checked the TCGA normal and The Genotype-Tissue 
Expression AML datasets at GEPIA2 (http://gepia​2.cance​
r-pku.cn) and found the TNFRSF4 expression in AML is 
significantly higher than HDs (Additional file  2: Figure 
S1B). Subsequently, BM samples of 39 non-M3 AML, 
29 MDS (EB-1, 2) patients and 18 HDs were collected 
from our clinical center, Southeast University affiliate 

Zhongda Hospital, from 1 February 2016 to 1 August 
2019. RT-qPCR was performed to detect the TNFRSF4 
mRNA expression. The expression of TNFRSF4 mRNA 
in AML patients was significantly higher compared with 
HDs (p = 0.0377) and MDS (EB-1, 2; p = 0.0017; Fig. 2h) 
patients respectively. There no statistically significant dif-
ference of TNFRSF4 mRNA expression between HDs and 
MDS (EB-1, 2; p = 0.1243) patients.

Additionally, combined with MDS (EB-1, 2) patients 
blasts results, we found TNFRSF4 expression level was 
positively related with bone marrow blasts percentage 
(Spearman’s Rho = 0.372, p = 0.002; Fig. 2i).

TNFRSF4 expression and clinical characters
TNFRSF4 expression data and clinical data of 157 non-
M3 patients were download from TCGA dataset. Histo-
grams representing the distribution of TNFRSF4 mRNA 
log2-transformed data and TNFRSF4 scores are provided 
in Additional file  2: Figure S1C, D. The scatterplot of 
TNFRSF4 log2-transformed mRNA expression against 

Fig. 1  a The schematic view of the procedure of present study. b Volcanic maps of all genes. Red spot, the expression is up-regulated; Blue spot, 
the expression is down-regulated; Gray spot, no significantly dysregulated. c, d The bubble chart showed the top 10 pathways with significant 
difference. c The KEGG enrichment analysis. d The GO biological process enrichment analysis. e IL15 signaling pathway screened out from GSEA 
with the reference gene sets from the MSigDB of the oncogenic signatures

http://gepia2.cancer-pku.cn
http://gepia2.cancer-pku.cn
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TNFRSF4 Z score is shown in Additional file  2: Figure 
S1E (Pearson’s r = 0.8, p < 0.001). TNFRSF4 mRNA levels 
were compared among patients classified according to 
the FAB and there was significant difference of TNFRSF4 
expression among the subgroups (Additional file  2: Fig-
ure S1F; p = 0.0055). We also analyzed TNFRSF4 expres-
sion according to the NCCN AML classification based 
on their molecular and cytogenetic risk status into good, 
intermediate, and poor risk stratifications. TNFRSF4 
expression of good stratification patients was signifi-
cantly lower than intermediate (p = 0.0004) and poor 
(p = 0.0011, Additional file  2: Figure S1G) stratification 
patients. Additionally, we used the Vizome data analysis 

tool [28], which contains data from the BEAT AML 
cohort, and examined the level of TNFRSF4 expression 
of relapsed (N = 22) was significantly higher than de novo 
non-M3 AML (N = 214) samples (p = 0.0099, Additional 
file 2: Figure S1H).

We dichotomized the patients in the TCGA data set 
based on their TNFRSF4 mRNA expression Z score 
(RNA Seq V2 RSEM) into high (Z score ≥ 0, N = 20) and 
low (Z score < 0, N = 137). Patients with high TNFRSF4 
expression had significantly higher age (median 66.5 vs. 
57, p = 0.012) and were widely distributed in poor group 
(20% vs. 0%, p = 0.044) compared with the good group 
(Table 1).

Fig. 2  a–c The PPI analysis at STRING (https​://strin​g-db.org). d–f Cytoscape analysis candidate genes after PPI network analysis. a, d genes from 
IL15 signaling pathway; b, e genes from cytokine–cytokine receptor interaction pathway; c, f genes from immune response pathway. g Venn 
diagram showed the overlapping gene of candidate genes. h The TNFRSF4 mRNA relative expression was calculated by the comparative Ct 
method presented as 2−ΔCt. *p < 0.05, **p < 0.01. i Spearman correlation coefficient analysis between bone marrow blasts percentage and TNFRSF4 
expression

https://string-db.org
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TNFRSF4 and mutations
TNFRSF4 was screened out from non-M3 AML 
patients based on absence or presence of TP53 muta-
tion. We verified the expression of TNFRSF4 was signif-
icantly higher in patients with TP53 mutation (N = 15) 
than TP53 wide type (N = 142, p = 0.0118, Fig.  3a). To 
understand other potential molecular genetic aber-
rations that may lead to or be associated with high 
TNFRSF4, we analyzed the expression with respect 
to the other mutational status of patients. TNFRSF4 
was significantly higher in patients with NPM1 muta-
tion (N = 49) than in patients with NPM1 wild type 
(N = 108, p = 0.0024, Fig.  3b). TNFRSF4 was also sig-
nificantly higher in patients with FLT3 mutation (ITD 
and point mutations) (N = 45) than in patients carrying 
FLT3 wild type (N = 112, p = 0.0102, Fig. 3c). Addition-
ally, TNFRSF4 was significantly lower in the patients 
with RUNX1 mutation (N = 28) than in patients with 
the wild-type RUNX1 (N = 129, p = 0.0311, Fig. 3d). No 

significant association was observed between TNFRSF4 
expression and mutations in DNMT3A, IDH1, IDH2, 
TET2, CEBPA, WT1, and NRAS.

When we dichotomized patients according to TNFRSF4 
Z scores, we found a higher frequency of TP53 mutations 
in TNFRSF4 (Z ≥ 0) patients than in low TNFRSF4 (Z < 0) 
patients (25% vs. 7.3%, Fisher exact, p = 0.026). No other 
association was found between TNFRSF4 upregulation 
and mutations in DNMT3A, IDH1, IDH2, TET2, NPM1, 
CEBPA, WT1, and NRAS (Table 2).

Additionally, we examined the association between 
TNFRSF4 expression and clinical outcome in patients 
with TP53, NPM1, FLT3 and RUNX1 mutations. We 
stratified patients according to mutational status and 
performed survival analysis in each group. We found 
that in patients with wild type TP53, NPM1, FLT3 and 
RUNX1, high TNFRSF4 expression (Z ≥ 0) was associ-
ated with a significantly shorter OS (median survival: 
TP53, 7  months vs. 24.1  months, p = 0.024; NPM1, 

Table 1  Clinical characteristics of non-M3 AML cohort in the TCGA data set with respect to TNFRSF4 expression

Total TNFRSF4 low (Z < 0) TNFRSF4 high (Z ≥ 0) p value

TNFRSF4 low vs. 
high

Fisher exact test

Sex, no. (%)

 Female 72 59 (81.9) 13 (18.1) 0.092

 Male 85 78 (91.8) 7 (8.2)

Age, years (range) 0.012

 Median 59 57 66.5

 Mean 56.0 ± 1.29 54.9 ± 1.38 63.5 ± 3.24

WBC count ×109/L 0.528

 Median 22.2 22.2 25.95

 Mean 39.3 ± 3.76 37.0 ± 3.62 54.6 ± 15.93

PB blasts, % 0.254

 Median 72 71 76.5

 Mean 68.4 ± 1.51 67.7 ± 1.62 72.7 ± 4.13

BM blasts,  % 0.06

 Median 42 39 58.5

 Mean 41.5 ± 2.58 39.5 ± 2.73 54.9 ± 7.32

NCCN subtype, no. Vs. favorable

 Favorable 17 17 (100) 0 (0)

 Intermediate 92 82 (89.1) 10 (10.9) 0.169

 Poor 45 36 (80) 9 (20) 0.044

FAB subtype, no.

 M0 16 13 3

 M1 44 36 8

 M2 38 33 5

 M4 34 32 2

 M5 18 17 1

 M6 2 2 0

 M7 3 2 1
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3  months vs. 19.2  months, p < 0.0001; FLT3, 1.9  months 
vs. 24.1  months, p < 0.0001; RUNX1, 7  months vs. 
21.5  months, p = 0.0305 Fig.  4a–d). There was a simi-
lar trend but not statistically significant association was 
observed with high TNFRSF4 expression and shorter 
DFS (median survival: TP53, 15 months vs. 16.1 months, 
p = 0.0507; NPM1, 12 months vs. 17 months, p = 0.0661; 
FLT3, 12  months vs. 17.3  months, p = 0.6943; RUNX1, 
12 months vs. 14.2 months, p = 0.0650, Additional file 3: 
Figure S2A–D). We also found that only in patients with 
RUNX1 mutation, high TNFRSF4 expression was asso-
ciated with a significantly shorter OS (median survival: 
1 months vs. 17.4 months, p < 0.0001, Fig. 4e).

TNFRSF4 expression and clinical outcome
The OS of TNFRSF4 high group (Z ≥ 0) was significantly 
shorter than that of low expression patients (median sur-
vival: 2.35  months vs. 21  months, p < 0.0001, Fig.  5a), A 
similar trend was observed in DFS in patients with high 
TNFRSF4 expression (median survival: 12  months vs. 
14.6 months, p = 0.0868; Additional file 3: Figure S2E). To 
further validate the association between high TNFRSF4 
and poor clinical outcome, we stratified patients into 
Z ≥ 0.5 and Z < 0.5 for survival analysis. Patients with high 

TNFRSF4 (Z ≥ 0.5) expression had significantly shorter 
OS than patients with low TNFRSF4 (median survival: 
0.8  months vs. 19  months, p < 0.0001; Additional file  3: 
Figure S2F). We also analyzed the TCGA data set using 
TNFRSF4 median expression to dichotomize patients 
into high and low expression groups. We found that 
patients with high TNFRSF4 expression had shorter OS 
(median survival: months 11.5 vs. 22 months, p = 0.0235; 
Additional file 3: Figure S2G).

Non-M3 patients were also grouped according to 
FAB classification system. Among M0, M1, M2 and M4 
subtypes, patients with high TNFRSF4 (Z ≥ 0) had sig-
nificantly shorter OS (median survival: M0, 2.4  months 
vs. 26 months, p < 0.0001; M1, 4 months vs. 27 months, 
p = 0.0163; M2, 0.8 months vs. 19 months, p = 0.004; M4, 
4.85 months vs. 19 months, p = 0.0101; Additional file 4: 
Figure S3A–D). Furthermore, there was a significant 
decrease in the DFS of TNFRSF4 high patients (Z ≥ 0) 
compared with TNFRSF4 low patients (median sur-
vival: months 5.15 vs. 13  months, p = 0.004; Additional 
file  4: Figure S3E) in M1 subgroup but not in the rest 
subgroups.

When patients were stratified according to their 
risk stratification, we found that among intermediated 

Fig. 3  Association of TNFRSF4 expression with patient mutational status. Relative TNFRSF4 log2 mRNA expression in a patients with TP53 mutations 
versus wild type; b patients with NPM1 mutations versus wild type; c patients with FLT3 mutations versus wild type; and d patients with RUNX1 
mutations versus wild type. *p < 0.05. **p < 0.01
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and poor risk stratification patients, those TNFRSF4 
high (Z ≥ 0) had shorter OS than those with TNFRSF4 
low (median survival: intermediated, months 4.9 vs. 
22 months, p = 0.0136; Poor, 1.9 vs. 11 months, p < 0.0001; 
Fig. 5b, c). A similar but no statistically significant trend 
of DFS was observed in poor risk stratification (median 
survival: 9 months vs. 17 months, p = 0.3376; Additional 
file 5: Figure S4A). However, no significant difference was 
observed in DFS between TNFRSF4 high and low group 
in intermediated risk stratification.

When patients were stratified according to whether 
they received a transplant or not, we found that only in 
patients who received a transplant with TNFRSF4 high 
expression (Z ≥ 0) associated with significantly shorter 
OS and DFS (median OS: 7  months vs. 32.3  months, 
p < 0.0001; median DFS: 9  months vs. 14.2  months, 
p = 0.0302; Fig.  5d, e). No significant difference but 
similar trend was observed in OS and DFS between the 
TNFRSF4 high and low in patients who did not receive 
a transplant (median OS: 3  months vs. 9.55  months, 

Table 2  Association of TNFRSF4 expression based on patient mutation status in the TCGA data set according to TNFRSF4 
expression

Total TNFRSF4 low (Z < 0) TNFRSF4 high (Z ≥ 0) p value

MUT vs. WT Fischer 
exact 
test

FLT3, no. (%) 0.0102 0.111

 MUT 45 (28.7) 36 (80.0) 9 (20.0)

 WT 112 (71.3) 101 (90.2) 11 (9.8)

IDH1, no. (%) 0.6846 0.695

 MUT 16 (10.2) 15 (93.7) 1 (6.3)

 WT 141 (89.8) 122 (86.5) 19 (13.5)

IDH2, no. (%) 0.9227 0.699

 MUT 17 (10.8) 16 (94.1) 1 (5.9)

 WT 140 (89.2) 121 (86.4) 19 (13.6)

RUNX1, no. (%) 0.0311 0.759

 MUT 28 (17.8) 24 (85.7) 4 (14.3)

 WT 129 (82.2) 113 (87.6) 16 (12.4)

TET2, no. (%) 0.6979 0.103

 MUT 15 (9.6) 11 (73.3) 4 (26.7)

 WT 142 (90.4) 126 (88.7) 16 (11.3)

NRAS, no. (%) 0.4658 1

 MUT 13 (8.3) 12 (92.3) 1 (7.7)

 WT 144 (91.7) 125 (86.8) 19 (13.2)

CEBPA, no. (%) 0.7981 1

 MUT 13 (8.3) 12 (92.3) 1 (7.7)

 WT 144 (91.7) 125 (86.8) 19 (13.2)

WT1, no. (%) 0.736 0.363

 MUT 10 (6.4) 10 (100.0) 0 (0.0)

 WT 147 (93.6) 127 (86.4) 20 (13.6)

DNMT3A, no. (%) 0.6877 0.178

 MUT 42 (26.8) 34 (81.0) 8 (19.0)

 WT 115 (73.2) 103 (89.6) 12 (10.4)

NPM1, no. (%) 0.0024 0.439

 MUT 49 (31.2) 41 (83.7) 8 (16.3)

 WT 108 (68.8) 96 (88.9) 12 (11.1)

TP53, no. (%) 0.0118 0.026

 MUT 15 (9.6) 10 (66.7) 5 (33.3)

 WT 142 (90.4) 127 (89.4) 15 (10.6)
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p = 0.1503; median DFS: 15  months vs. 17  months, 
p = 0.4539; Additional file 5: Figure S4B, C).

We performed survival analysis in patients with non-
M3 AML stratified by their age into younger patients 
(< 60) and older patients (≥ 60). In patients < 60, high 
TNFRSF4 (Z ≥ 0) expression was associated with 
shorter OS compared with low TNFRSF4 (median sur-
vival: 6 months vs. 45.8 months, p < 0.0001; Fig. 5f ) and 
a decrease in DFS though not significant (median sur-
vival: 6.5 months vs. 16.1 months, p = 0.2047, Additional 
file  5: Figure S4D). A similar trend but not statistically 
significant association of OS and DFS was observed in 
older patients (median OS: 6  months vs. 10.5  months; 
p = 0.6007; median DFS: 12  months vs. 13.4  months; 
p = 0.1207; Additional file 5: Figure S4E, F).

Discussion
In present study, we analyzed DEGs between TP53-
mutated and wildtype non-M3 AML patients based 
on TCGA dataset. IL15 signaling pathway as well as 
cytokine–cytokine receptor interaction pathway and 
immune response pathway were screened out after 
enrichment analysis. We also utilized the “String” web-
site to complete the PPI networks of DEGs from each 
pathway and imported PPI networks into Cytoscape 
plug-ins to found out the candidate genes. Subsequently, 
TNFRSF4 was screened out by overlapping candidate 
genes and was used for further study.

Here we reported that elevated TNFRSF4 mRNA 
expression is significantly associated with poorer OS of 
non-M3 AML patients. This is particularly relevant with 
patients < 60  years of age, patients received transplant 
and patients in intermediate and poor risk stratifica-
tion. The significant shorter OS of high TNFRSF4 mRNA 

Fig. 4  Survival analysis of patients with respect to TNFRSF4 expression after stratification based on TP53, NPM1, FLT3 and RUNX1 mutation status. 
Overall survival of patients with TNFRSF4 high (Z score ≥ 0) versus TNFRSF4 low (Z score < 0) among patients with a TP53, b NPM1, c FLT3 and d 
RUNX1 wild-type gene. e Overall survival of patients with TNFRSF4 high (Z score ≥ 0) versus TNFRSF4 low (Z score < 0) among patients with RUNX1 
mutated gene



Page 10 of 13Gu et al. Cancer Cell Int          (2020) 20:146 

expression patients is also relevant with TP53, NPM1, 
FLT3 and RUNX1 wild type. Additionally, combined with 
our clinical BM simples, TNFRSF4 mRNA expression 
was higher in AML patients than HDs and MDS (EB-1, 
2) patients and the expression is positively related with 
BM blasts percentage. Therefore, the identification of 
outcome predictors and possible viable targets in afore-
mentioned subset of patients will greatly affect disease 
understanding and treatment outcome.

Cancer immunotherapy is emerging as a promising 
approach for cancer treatment and immune checkpoint 
inhibitors have advanced rapidly over the past decade. 
Anti-cytotoxic T-lymphocyte antigen 4 (CTLA4) and 

anti-programmed death 1 (PD1)/Programmed death-
ligand 1 (PD-L1) monoclonal antibodies have produced 
long-lasting anti-tumor immune responses that translate 
into clinical benefits for many cancer types [29]. Previous 
research has found that p53 can transactivate a number 
of immunosuppressive genes including programmed 
death–ligand 1 (PD-L1), thus activating one of the major 
immunological checkpoints. p53 also transactivates the 
expression of forkhead box P3 (FOXP3), a transcription 
factor that is essential for the generation and function of 
regulatory T cells, a subpopulation that maintains tol-
erance to self-antigens [30]. Breast cancers with TP53 
mutation also show significantly higher activities of a 

Fig. 5  Survival analysis of patients with respect to TNFRSF4 expression. a Overall survival of 157 non-M3 AML patients with TNFRSF4 Z score ≥ 0 and 
TNFRSF4 Z score < 0. Survival analysis of patients with respect to TNFRSF4 expression based on patient risk stratification. b Overall survival of patients 
with TNFRSF4 high (Z score ≥ 0) versus TNFRSF4 low (Z score < 0) in patients with intermediate risk stratification. c Overall survival of patients with 
TNFRSF4 high (Z score ≥ 0) versus TNFRSF4 low (Z score < 0) in patients with poor risk stratification. Survival analysis of patients with respect to 
TNFRSF4 expression after stratification based on patient transplant status. d Overall survival and e disease-free survival of patients with TNFRSF4 high 
(Z score ≥ 0) versus TNFRSF4 low (Z score < 0) in patients who received a transplant. Survival analysis of patients with respect to TNFRSF4 expression 
based on age. f Overall survival of patients < 60 years of age with TNFRSF4 high (Z score ≥ 0) versus TNFRSF4 low (Z score < 0)
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wide variety of immune cells, functions, and pathways 
than TP53 wildtype group [18]. In AML, TP53 muta-
tion is associated with complex karyotype, poor stand-
ard therapy response and short overall survival [10, 11]. 
However, the role of TP53 in AML is enigmatic. In our 
research, TNFRSF4 was screened out by dividing patients 
based on absence or presence of TP53 mutation, thereby 
we speculated that the mechanism between TNFRSF4 
and TP53 maybe associated with IL15 related immune 
response or cytokine–cytokine receptor interaction. We 
found that beside TP53, NPM1 and FLT3 mutation also 
associated with high TNFRSF4 expression. The mecha-
nistic interplay between TNFRSF4 and the mutation 
genes is yet to be determined.

TNFRSF4/TNFSF4 signaling serves a key role in the 
development, differentiation and physiological func-
tions of T cells and other immunological cells [31]. In 
various tumor models, anti-TNFRSF4 has been shown to 
enhance CD8+ T cells infiltration and reduce Treg cells 
infiltration into the tumor [17, 32, 33]. Another research 
also found a dependence on direct TNFRSF4 ligation 
on CD8+ T cells to increase tumor specific cytotoxic-
ity in  vivo [16]. Research has found that AML patients 
CD8+ T cell dysfunction was in part reversible upon 
PD-1 blockade or TNFRSF4 co-stimulation in vitro [34]. 
Besides T cells, NK cells are a second cytotoxic lympho-
cyte subset that contributes to antitumor immunity, 
particularly in leukemia [35]. Research reported that 
TNFRSF4 is expressed on AML blasts, depending on 
TNFRSF4/TNFSF4 signaling promoted NK-cell activa-
tion, cytokine production and cytotoxicity which can 
against primary AML cells [36]. In combination with our 
results, we suggested that immunotherapy may product 
more therapeutic effect in patients with high TNFRSF4 
expression.

Conclusion
TNFRSF4 was screened out as a key gene related with 
TP53 mutation based on non-M3 AML TCGA data 
set. TNFRSF4 was higher in intermediate, poor risk 
stratification and related with relapse status. Addition-
ally, high TNFRSF4 expression was also associated with 
NPM1, FLT3 mutation. Based our clinical data, we found 
TNFRSF4 expression was significant higher in non-M3 
AML patients than HDs and MDS (EB-1, 2) patients. 
The expression level was positively related with blasts 
percentage. Our findings demonstrate that elevated 
TNFRSF4 expression contributes to predict the poor clin-
ical outcome of patients with non-M3 AML. This study 
provides a rationale for further functional and mechanis-
tic studies aiming to understand the role of TNFRSF4 in 
non-M3 AML.
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