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Abstract
Background  About 10% of hematologic malignancies are multiple myeloma (MM), an untreatable cancer. Although 
lactate and branched-chain amino acids (BCAA) are involved in supporting various tumor growth, it is unknown 
whether they have any bearing on MM prognosis.

Methods  MM-related datasets (GSE4581, GSE136337, and TCGA-MM) were acquired from the Gene Expression 
Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Lactate and BCAA metabolism-related 
subtypes were acquired separately via the R package “ConsensusClusterPlus” in the GSE4281 dataset. The R package 
“limma” and Venn diagram were both employed to identify lactate-BCAA metabolism-related genes. Subsequently, 
a lactate-BCAA metabolism-related prognostic risk model for MM patients was constructed by univariate Cox, 
Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression analyses. The gene set 
enrichment analysis (GSEA) and R package “clusterProfiler"were applied to explore the biological variations between 
two groups. Moreover, single-sample gene set enrichment analysis (ssGSEA), Microenvironment Cell Populations-
counter (MCPcounte), and xCell techniques were applied to assess tumor microenvironment (TME) scores in MM. 
Finally, the drug’s IC50 for treating MM was calculated using the “oncoPredict” package, and further drug identification 
was performed by molecular docking.

Results  Cluster 1 demonstrated a worse prognosis than cluster 2 in both lactate metabolism-related subtypes and 
BCAA metabolism-related subtypes. 244 genes were determined to be involved in lactate-BCAA metabolism in MM. 
The prognostic risk model was constructed by CKS2 and LYZ selected from this group of genes for MM, then the 
prognostic risk model was also stable in external datasets. For the high-risk group, a total of 13 entries were enriched. 
16 entries were enriched to the low-risk group. Immune scores, stromal scores, immune infiltrating cells (except Type 
17 T helper cells in ssGSEA algorithm), and 168 drugs’IC50 were statistically different between two groups. Alkylating 
potentially serves as a new agent for MM treatment.
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Background
Multiple myeloma (MM), a plasma cell malignancy char-
acterized by abnormal expansion of clonal plasma cells 
in the bone marrow, is the second most common hema-
tological tumor in adults [1]. Over the past two decades, 
the emergence of new drugs and treatments have greatly 
improved the response rate and survival rate of patients 
with multiple myeloma [2, 3]. Nevertheless, high-risk 
MM patients still have disease recurrence and aggrava-
tion [4]. Due to the obvious heterogeneity in pathogene-
sis, clinical manifestations and prognosis of MM patients, 
it is of great research value and space to find more effec-
tive and reliable molecular markers for individualized 
treatment.

Lactate is the final metabolic waste product of glycoly-
sis. Lactate production and accumulation in tumors can 
promote tumor growth and metastasis, and tumor cells 
can also take up and utilize lactate. High serum lactate 
level is associated with poor prognosis, overall survival, 
disease-free survival, and metastasis-free survival in 
breast cancer [5] and other cancers [6, 7]. Excessive lac-
tate inhibits the normal function of T cells, resulting in 
poor anti-tumor effect of immunotherapy [8]. With the 
development of tumor metabolism and gene therapy 
research, lactate metabolism-related genes (LMRGs) 
have been considered as very valuable tumor therapeutic 
targets [9]. Lactate dehydrogenase (LDH) is the enzyme 
responsible for the reciprocal conversion of lactate and 
pyruvate. High serum LDH is associated with advanced 
disease characteristics and a poor survival rate of MM 
[10]. However, the relationship between lactate and MM 
remains unclear.

Branched chain amino acids (BCAAs), including leu-
cine, isoleucine and valine, are essential amino acids of 
the body. The main metabolic pathway of BCAA is deg-
radation metabolism. BCAAs is not only an important 
nutrient in the human body, which can provide essential 
raw materials for protein synthesis, but also participates 
in many physiological and pathological processes in the 
body through various metabolic pathways. At present, 
the biological mechanism between circulating branched-
chain amino acids and tumor development is not clear. 
BCAAs promote the growth of cancer by participating in 
biosynthesis pathways and providing energy [11]. In addi-
tion, it can also help tumors escape the surveillance of 
immune cells [12]. The previous finding has shown that 
branched-chain amino acid transaminase 1 promotes 

the occurrence of mitochondria by activating the mTOR 
pathway, and then promotes the growth enhancement 
of breast tumor cells [13]. This was demonstrated in a 
number of studies that branched chain amino acid trans-
aminase 1 may play a vital role in the prognosis of many 
tumors [12, 14, 15] and is considered as a prognostic bio-
marker of breast cancer [14]. However, the relationship 
between it and MM has not been studied so far.

Here, our research has demonstrated that the com-
bined expression of lactate and branched chain amino 
acid metabolism genes is a reliable indicator of myeloma 
prognosis and can be utilized to guide treatment deci-
sions. 256 samples were divided into high and low-risk 
groups by consensus clustering and the Kaplan-Meier 
(K-M) survival curves were drawn, which revealed that 
the survival of MM correlated with lactate metabolism 
and the related branched chain amino acids. In addition, 
the cytotoxic lymphocytes were significantly decreased 
high-risk groups, which could potentially reduce the 
anti-tumor effect. The risk score and independent prog-
nosis of each clinical factor were investigated by univari-
ate and multivariate regression. Importantly, the multiple 
metabolic genes (CKS2 and LYZ) correlated with mark-
edly patient survival in MM were identified from this 
study. Temozolomide, alkylating agents, could be an 
alternative solution to treating myeloma patients whose 
branched chain amino acid and lactate levels are abnor-
mal. In this study, a novel prognostic prediction model 
for multiple myeloma was developed, which was based 
on a gene signature related to lactate and chain amino 
acid metabolism.

Materials and methods
Collection of the date of the MM
GSE4581 (high purity bone marrow plasma cells from 
MM patients) and GSE136337 datasets (biopsy tissue of 
whole bone marrow) were sourced from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/). The prog-
nostic signature was trained using the GSE4581 dataset, 
which contained data on 256 MM patients who had 
received TT2 prior to diagnosis. The GSE136337 dataset 
that contained 426 MM samples was utilized as a valida-
tion set for the assessment of the prognostic risk model. 
787 samples (bone marrow tissue) and the clinicopatho-
logical information of MM were sourced from the TCGA 
databases (https://tcga-data.nci.nih.gov/) and also used 

Conclusions  CKS2 and LYZ were identified as lactate-BCAA metabolism-related genes in MM, then a novel 
prognostic risk model was built by using them. In summary, this research may uncover novel characteristic genes 
signature for the treatment and prognostic of MM.
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to validate the prognostic signature. Each sample in these 
three datasets was with survival data.

Meanwhile, 13 lactate metabolism-relate genes 
(LMRG) and 27 BCAA metabolism-relate genes were 
acquired based on the GeneCards (https://www.gen-
ecards.org/) and Molecular Signatures Database 
(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/), 
respectively.

Consensus clustering
Based on the expression of 13 LMRG, the R package 
“ConsensusClusterPlus” [16] was utilized to identify dif-
ferent lactate metabolism-related subtypes among the 
MM samples. Likewise, BCAA metabolism-related sub-
types of MM samples were generated according to the 
expression patterns of 27 BCAA metabolism-related 
genes as well. Principal component analysis (PCA) was 
applied to validate these clustering results. Additionally, 
the R package “Survival” was utilized to compare the 
overall survival (OS) among different subtypes. Besides, 
the expression heatmap of related genes in different sub-
types of MM was pictured.

Acquirement of differentially expressed genes (DEGs) in 
different subtypes
The limma package [17] based on |log2FC|>0.5 and 
p.adjusted < 0.05 was used to screen DEGs among lac-
tate metabolism-related subtype and BCCA metabolism-
related subtype, respectively. The “ggplot2” was adopted 
to plot the volcanic maps and heatmaps [18] and “pheat-
map” [19] to visualize DEGs. Moreover, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of DEGs was done 
with the “clusterProfiler” R package [16]. The “ggplot2” 
was utilized to display the outcome.

Construction and validation of the prognostic risk model 
of MM
By using univariate Cox analysis of intersecting genes 
(lactate-BCAA metabolism-related gene) in the training 
set, the prognosis-related genes were acquired (P < 0.005) 
Subsequently, the most predictive prognostic genes 
were identified by LASSO [20] analysis and multivari-
ate Cox analysis then sequentially. Based on the median 
risk score, the training set of MM patients was separated 
into two groups. Kaplan-Meier (KM) curves were then 
utilized to show the difference in OS between the two 
groups. The “survROC” was applied to display the ROC 
curves [21] to perform an assessment of the prognostic 
capability of prognostic risk model. At last, we validated 
the prognostic risk model in the external validation 
GSE136337 dataset and TGCA-MM.

The relationship between the clinical characteristics and 
the risk scores
The following analyses were performed to explore the 
relationship between clinical characteristics and risk 
scores. The chi-square test was applied to identify clinical 
characteristics that were substantially different between 
the two groups. For clinical characteristics classified dif-
ferentially in the two groups, survival analysis was carried 
out using K-M curves.

Analysis of independent prognostic
To determine if clinicopathological characteristics and 
risk scores were independent predictive factors for MM 
patients, univariate and multifactorial Cox analyses 
were performed. The “rms” (Harrell Jr FE (2022). _rms: 
Regression Modeling Strategies_. R package version 6.3-
0, <https://CRAN.R-project.org/package=rms>) was 
adopted to construct the nomogram to predict survival 
probability based on independent prognostic criteria.

Biological differences between two groups
Based the following criteria: |log2FC|>0.5, P.Value < 0.05, 
the DEGs were acquired using the “limma”, and GO and 
KEGG analysis were adopted to the DEGs. Additionally, 
the enrichment pathways were investigated using GSEA.

Tumor microenvironment analysis
The ssGSEA [22] was adopted to calculate The abundance 
of distinct immune cell infiltrations in all of the MM sam-
ples. Microenvironment Cell Populations-counter (MCP-
counter), and xCell algorithms in order to appropriately 
analyze the tumor microenvironment of MM. Seven 
immunomodulators’ differential expression in the train-
ing set was assessed using the Wilcoxon rank-sum test.

Drug prediction analysis
Using the “oncoPredict” R program, the therapeu-
tic medicines for MM were predicted based on GDSC 
(https://www.cancerrxgene.org/) [23]. To compare the 
two groups’ differences in drug sensitivity, we adopted 
the Wilcoxon rank-sum test. Then, the characteristic 
gene’s protein structures were sourced from the PDB 
database (http://www.rcsb.org/), and AutoDock Tools 
was applied to calculate the protein hydrogenation and 
charge [24]. PubChemdatabase(https://www.ncbi.nlm.
nih.gov/pccompound/) was applied for downloading 
the chemical structures of medicines’ active ingredients. 
The AutoDock tool was used to check the charge balance 
and rotatable bonds of tiny molecules. To produce dock-
ing energy, AutoDock Vina [25] ran docking simulations. 
To view the docked complexes, PyMol software [26] was 
lastly employed.

https://www.genecards.org/
https://www.genecards.org/
https://www.gsea-msigdb.org/gsea/msigdb/
https://CRAN.R-project.org/package=rms%3E
https://www.cancerrxgene.org/
http://www.rcsb.org/
https://www.ncbi.nlm.nih.gov/pccompound/
https://www.ncbi.nlm.nih.gov/pccompound/
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Extraction of total RNA from spinal fluid samples and qRT-
PCR
To confirm the expression pattern of the characteristic 
genes in MM more precisely, bone marrow fluids of 14 
MM patients and 14 normal samples were used for this 
study. 500ul of each sample was taken separately, and 
all intracellular RNA was extracted by Trizol reagent, 
and the quality of the extracted RNA were detected by 
nanodrop (Thermo scientific). The extracted RNA was 
reverse transcribed to cDNA according to manufacture 
instructions to detect the following targets expression. 
The BlazeTaq™ SYBR® Green qPCR Mix2.0 kit (Geneco-
poeia) and the following reaction system were uutilized 
to perform qRT-PCR reactions next. Primer sequences 
are shown in Table S1. The CT values of each gene were 
counted, and the relative expression of characteristic 
genes was analyzed according to the 2-ΔCt method using 
GAPDH as the internal reference gene.

Gene silencing
siRNAs and negative control were transfected into 
MM1.S cells by using INTERFERin® (Poly-Plus Corpo-
ration) reagent. After 48 h, the cells were harvested and 
used for rest experiments. The siRNA sequences are pro-
vided in Table S3.

Cell proliferation analysis
Cells(2.0 × 104) were transfected and seeded into 96-well 
plates. After 48 h of culturing, WST-8 solution (Enhanced 
Cell Counting Kit-8, 1:10) was added and incubated for 
two hours to measure cell proliferation. The OD value 
was ascertained by a microplate reader.

Transwell Assay
For migration and invasion assays, cell suspensions 
of 3 × 105 and 5 × 105 cells in serum free medium were 
seeded on Transwell membranes (8 μm pore size, Costar, 
Corning Incorporated, NY, USA). The membranes were 
coated with or without Matrigel (BD Biosciences, NJ, 
USA) for the invasion assay or the migration assay. Fol-
lowing incubation, cells on the upper membranes were 
fixed and stained with crystal violet for 30 min. 10% FBS 
was added to the medium in the lower chambers. Subse-
quently, the migrated or invade cells were imaged using 
a microscope (Nikon, Tokyo, Japan). To quantify the 
cells that had migrated into the lower chambers within 
24 h, FACSCalibur flow cytometer (BD Biosciences) was 
utilized.

Apoptosis analysis
Cells were transfected with siRNA for 48 h, after which 
they were collected and centrifuged. Subsequently, the 
medium was removed and the cells were stained with 
annexin V/FITC and 7AAD (4  A Biotech). Finally, the 

cells were stored in the dark at room temperature for 
15 min. Flow cytometry analyses were conducted by uti-
lizing a FACSCalibur flow cytometer (BD Biosciences) to 
identify cell apoptosis. FlowJo software was used to ana-
lyze the data.

Statistical analysis
All analyses were conducted utilizing R version 3.4.1 and 
its associated packages. Student’s t-test was utilized in 
this study to determine any discrepancies. The selection 
of statistical methods is outlined in the study methods. 
Statistical significance was determined at a maximum 
P value of 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, **** 
p < 0.0001). This study’s experimental data was repeated 
more than three times. GraphPad Prism 9 was utilized to 
analyze the differences between groups.

Results
Identification of lactate metabolism subtypes and 
branched-chain amino acid metabolic subtypes
It could be seen that the best clustering results achieved 
when 256 MM patients were clustered into two molec-
ular subtypes (k = 2) no matter based on the expression 
patterns of 27 BCAA metabolism-related genes (cluster 
1 = 159, cluster 2 = 97) or 13 LMRG (cluster 1 = 143, clus-
ter 2 = 113) (Fig.  1A and E). The expression of BCAA 
metabolism-related genes and LMRG among different 
subtypes were presented in Fig.  1B and F, correspond-
ingly. The PCA results showed the reasonableness of 
these clustering results, exhibiting a good internal consis-
tency and stability (Fig. 1C and G). In both BCCA metab-
olism-related subtypes and lactate metabolism-related 
subtypes, it was cluster 1 that had a poorer prognostic 
outcome than cluster 2 (Fig. 1D and H).

Analysis of DEGs in different subtypes
Among the BCCA metabolism-related subtypes, 1079 
DEGs were screened (718 genes up-regulated and 361 
genes down-regulated) (Fig. 2A). These genes were con-
nected to the control of peptidyl-tyrosine phosphory-
lation and the control of cell-cell adhesion in MM, 
according to the BP analysis. In the case of CCs, these 
DEGs were engaged in actin-based cell projection, mem-
brane raft, and the external side of the plasma membrane. 
Regarding MF, These DEGs were involved in specific 
important functions, for example, C-C chemokine recep-
tor activity and cytokine binding (Fig.  2B). In a fur-
ther, KEGG pathway enrichment results revealed these 
DEGs were only linked to JAK-STAT signaling pathway, 
the Cytokine-cytokine receptor interaction, as well as 
Cell adhesion molecules (Fig.  2C). Among the lactate 
metabolism-related subtypes, 699 DEGs (294 genes with 
increased expression and 405 with decreased expres-
sion) were screened (Fig.  2D). The BP analysis revealed 



Page 5 of 18Yu et al. Cancer Cell International          (2023) 23:169 

that these DEGs were linked to immune response-
related neutrophil degranulation and activation. In the 
case of CCs, these DEGs were also engaged in the activ-
ity of membrane rafts. Regarding MF, these DEGs only 
involved in translation initiation factor activity (Fig. 2E). 

In particular, these genes were connected to central car-
bon metabolism and translation initiation factor activity 
in cancer, according to the KEGG pathway enrichment 
study (Fig. 2F).

Fig. 1  The identification of distinct subtypes of BCAA and LMRG metabolism. A Based on the cumulative distribution function (CDF) plot and consensus 
clustering matrix of consensus clustering with k valued 2 to 3, the intragroup correlations were the highest and the inter-group correlations were low 
when k = 2 (BCAA metabolism). B The expression of genes associated with BCAA metabolism in different subtypes. C Principal component analysis. D 
K-M survival analysis among the BCAA-related clusters. E Based on the CDF plot and consensus clustering matrix of consensus clustering with k valued 2 
to 3, the intragroup correlations were the highest and the inter-group correlations were low when k = 2 (lactate metabolism). F The expression of genes 
associated with LMRG metabolism in different subtypes. G Principal component analysis. H K-M survival analysis among the LMRG-related groups
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Fig. 2  Differential expression analysis of BCAA and LMRG related subtypes. A Volcano plot and heatmap of DEGs among the BCAA groups. B GO and C 
KEGG terms enriched in BCAA DEGs. D Volcano plot and heatmap of DEGs among the LMRG groups. E GO and F KEGG terms enriched in LMRG DEGs.
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Great functionality of risk signature
A number of 244 intersecting genes were obtained by the 
Venn diagram (Fig. 3A), in which, only two genes (CKS2 
and LYZ) were associated with MM prognosis with 
P < 0.05 and were selected as prognostic genes by univari-
ate Cox regression analysis. (Fig.  3B). Lasso regression 
is a statistical method that avoids multicollinearity and 
overfitting in multiple regression models to obtain a more 
refined model. When lamda.min = 0.00874, the regres-
sion coefficients of these two prognostic genes were not 
0 (Fig. 3C). To further screen for genes with the greatest 
prognostic value, multifactorial Cox regression was per-
formed to investigate their effects, and CKS2 and LYZ 
were still selected as the characteristic genes to construct 
a prognostic risk model for MM patients (Fig. 3D). Risk 
score = 0.2214×CKS2–0.1970×LYZ. Based on median 
risk = 0.5591 (Fig. 3E), the MM patients were divided into 
the high and low-risk groups. The result of K-M curve 
revealed that the prognosis was better for lower risks. 
(Fig. 3F). The ROC curve showed that this risk score sig-
nature has an area under the ROC curve (AUC) of 0.655, 
0.640,and 0.701 at 1, 3, and 5 years, respectively (Fig. 3G), 
indicating that this prognostic risk model has moder-
ate performance (Fig.  3G). The prognostic risk model 
still had strong predictive power in TCGA-MM and 
GSE136337 datasets (Figure S1-2).

Assessment of the prognostic risk model
Subgrp7, AMPIND, and OS were significantly differ-
ent (Fig. 4A). The OS and iss in the TCGA dataset were 
different (Fig. 4B). The del1qcyto, del13qcyto, and iss in 
GSE136337 were significantly different (Fig.  4C). In the 
training set and TCGA-MM dataset, there were survival 
differences in Subgrp7-CD1, and differences in OS, iss1, 
gender, del17pcyto, and del16qclinicalfish in GSE136337 
(Figure S3). In the training set and GSE136337 dataset, 
risk score and AMPIND were independent predictive 
indicators (Fig.  5A and B). The nomogram were con-
structed based on independent prognostic factors to 
assess 1, 3, and 5-year OS in relation to risk score and 
AMPIND (Fig.  5C). (The slope of the calibration curve 
converges with 1, proving that the value of the nomogram 
was a good predictive tool for MM prognosis (Fig. 5D). 
Similarly, the risk score, del17pcyto, iss1, and del13qcyto 
in the validation set GSE136337 were independent prog-
nostic factors for MM (Fig. 5E F), and the nomogram in 
the validation set still had good performance (Fig. 5G H). 
This showed the importance of the risk score for MM.

Biological differences between the two risk groups
Following two risk groups were generated, the differen-
tially expressed analysis between groups were screened 
for DEGs as well, in which a total of 559 DEGs with 
|log2FC|>0.5, P.Value < 0.05 (202 DEGs upregulated and 

357 DEGs downregulated) were obtained (Fig.  6A and 
B). Leukocyte proliferation and Neutrophil degranula-
tion are the main biological processes enriched in these 
DEGs (Fig.  6C). Viral protein interaction with cytokine 
and cytokine receptor pathways might be related to MM 
(Fig. 6D). BGSEA results indicated that the DEGs in the 
high-risk group were primarily enriched in Genes encod-
ing cell cycle-related targets of E2F transcription factors, 
a subgroup of genes that are regulated by MYC (Fig. 6E). 
While KRAS activation, angiogenesis, and genes encod-
ing components of the complement system were the 
three main mechanisms by which the DEGs in the low-
risk group were enriched (Fig. 6F).

Correlation analysis of risk scores and immune 
microenvironment
Analysis of the 3 algorithms revealed the abundance of 
various immune cell infiltrates in the MM samples in 
the training set, and the results showed that only Type 
17 T helper cells in ssGSEA were not significant in the 
high- and low-risk groups, while other immune infiltrat-
ing cells, immune scores and stromal scores enhanced 
immune-related features with increasing scores (Fig. 7A 
and B). Not only that, immunomodulators were all sig-
nificantly differentially expressed in the high and low 
risk groups (Fig. 7C and D). Among them, PDCD1LG2, 
KIR2DL1 and ICOS were expressed at lower levels in the 
high-risk group.

The analysis of MM-related drug prediction
The “oncoPredict” R program was used to compute 
IC50 for each MM patient between the two groups 
using the GDSC database. This process produced 168 
medicines with significantly different IC50s in the two 
groups (Table S2). The IC50 was lower in the high-risk 
group, indicating that high-risk patients are better suited 
for drug therapy. The top 3 drugs with the highest drug 
sensitivity (Carmustine_1807, Nelarabine_1814, and 
Temozolomide_1375) and the molecular docking of the 
proteins encoding the CKS2 and LYZ were explored 
using AutoDock (Fig.  8A,B,C). The docking fractions 
between the characteristic genes and the three drugs 
was less than − 1.2 k/mol, indicating that the three drugs 
could perfectly interact with the characteristic genes to 
influence the development of MM. For example, CKS2 
interacted with Carmustine_1807, Nelarabine_1814, and 
Temozolomide_1375 through 3, 5, and 3 hydrogen bonds, 
respectively, and the docking fractions were − 5.71, -7.88 
and − 5.73 kcal/mol, respectively. We verified that Nelara-
bine, Carmustine and Temozolomide could effectively 
enhance apoptosis in MM cells, and that Temozolomide 
could significantly inhibit the invasion and migration of 
MM cells (Figure S4).
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Fig. 3  Analysis and assess the prognostic gene signature related to BCAA and LMRG associated with MM. A Venn diagram of BCAA and LMRG DEGs. B 
Forest plot of hazard ratios for 2 prognostic BCAA and LMRG related genes. C Cross-validation for tuning parameter selection in the LASSO model. D For-
est plot of univariate Cox regression of OS related BCAA and LMRG related genes. E The distributions of risk score, survival status and expression profile of 
signature genes between the risk groups. F K-M survival analysis between the high- and low-risk groups. G ROC curve at 1-, 3- and 5-years of prognostic 
value of the prognostic index
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Expression and validation of CKS2 and LYZ
We made use of the Tumor Immune Single-cell Hub 
(TISCH) database and employed Uniform Manifold 
Approximation and Projection (UMAP) to examine 

the expression levels of CKS2 and LYZ in single cells 
obtained from myeloma tissues (Fig. 9A). Data from the 
Gene Expression Omnibus (GEO) dataset was obtained 
for both MM samples and normal tissue samples, with 

Fig. 4  Assessment of the prognostic risk signature. (A) Subgrp7, AMPIND, and OS were evaluated in two risk groups. (B) The OS and iss in the TCGA data-
set were evaluated in two risk groups. (C) The del1qcyto, del13qcyto, and iss in GSE136337 were evaluated in two risk groups
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the aim of using CKS2 and LYZ in microarray analysis. 
Our results revealed that CKS2 expression was highly 
expressed in MM samples (Fig.  9B). After examin-
ing the expression of CKS2 and LYZ, we found that the 
CKS2’expression was much higher in MM than in nor-
mal bone marrow fluids, while LYZ was just the oppo-
site (Fig.  9C). To verify the carcinogenic and invasive 

capacity of CKS2, we generated stably silenced CKS2 cell 
lines using MM1.S cells and assessed their viability. CKS2 
silencing promotes cell apoptosis (Fig.  9E), and inhibits 
the proliferation, migration, and invasion of A172 cells 
(Fig.  9D, F). This result demonstrated that CKS2 could 
be used as characteristic genes for MM prognosis and 
treatment.

Fig. 5  The Risk Score is an independent prognostic indicator. A-B Forest plot of hazard ratios for clinicopathological characteristics by Cox analysis in 
GSE4581 and GSE136337 dataset. C-D Nomogram was used to show the survival probability at 1-, 3- and 5-years in GSE4581 dataset. E-F Forest plot of 
hazard ratios for by Cox analysis in GSE4581 and GSE136337 dataset. G-H Nomogram was used to show the survival probability at 1-, 3- and 5-years in 
GSE136337 dataset
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Discussion
MM is a malignant tumor that is caused by the over-
growth of plasma cells. Elevated aerobic glycolysis levels 
during tumor metabolism produce a substantial amount 

of lactate, thus facilitating tumor growth [27, 28]. The 
metabolism of BCAAs can also affect multiple cancer 
characteristics and serve as an indicator of disease pro-
gression [14, 29]. Research has demonstrated that the 

Fig. 6  Differential expression analysis of high- and low-risk groups. A-B Volcano plot and heatmap of DEGs between the two groups. C-D The top 4 GO 
BP MF and KEGG terms of up- and downregulated DEGs in the two groups. E Result of GSEA analysis in the training set in the high-risk group. F Result of 
GSEA analysis in the training set in the low-risk group
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assessment of LMRG can be a reliable indicator of the 
prognosis of hepatocellular carcinoma [9]. However, the 
precise contribution of BCAA and lactate to multiple 
myeloma has not been elucidated yet.

In this study, we conducted an analysis of the charac-
teristics of genes related to lactate and branched-chain 
amino acids in MM and constructed a risk signature 
associated with overall survival. First, MM samples were 

Fig. 7  Analysis of immune infiltration and immunomodulators expression in high- and low-risk groups. A Heatmap of immune cell subset proportions. B 
Result of the infiltrating score of immune infiltrating cells, immune scores and stromal scores in two groups. C-D The immunomodulators genes expres-
sion in the two groups. (*, p < 0.05; **, p < 0.01; ****, p < 0.0001; vs. Low-risk group)
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grouped into two distinct molecular subtypes according 
to BCAA and LMRG metabolism-related gene expres-
sion. Next, our analysis of RNA-seq data revealed 559 
DEGs related to BCAA and LMRG between two molecu-
lar subtypes. In addition, we identified two genes (CKS2 
and LYZ) as effective prognostic indicators through uni-
variate Cox and LASSO regression. Next, patients can be 
divided into high-risk and low-risk groups according to 
risk scores. The result of K-M revealed that the progno-
sis is better for lower risks. The ROC curve demonstrates 
the effectiveness of the risk signature in predicting the 
survival rates of MM patients. Moreover, the indepen-
dent prognostic value of the risk signature was verified 

through univariate and multivariate Cox analyses. Many 
metabolisms of branched-chain amino acids-related 
genes have proven to be effective prognostic biomark-
ers [30, 31]. Zheng et al. found that the metabolism of 
BCAAs is a key factor in the conversion of hematopoi-
etic stem cells into leukemia [32]. Glushka et al. have also 
demonstrated that a modification of BCAA metabolism 
caused by the MSI2-BCAT1 axis is a contributor to the 
progression of myeloid leukemia [14]. Our research went 
beyond creating a risk signature that could effectively 
predict the OS of MM patients in both the training set 
and validation set. It was pointed out that these genes 

Fig. 8  The analysis of MM-related drug prediction. A-C Top 3 drug interaction conformation and interaction of CKS2 The top 3 drug sensitivity drug and 
the molecular docking of the proteins encoding the CKS2 (Carmustine_1807 (A), Nelarabine_1814 (B) and Temozolomide_1375 (C)), respectively
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related to BCAA and LMRGs metabolism played a major 
role in the progression of MM.

Tumor Microenvironment has highlighted the impor-
tance of immune cells in the development of MM [33]. 
Cytotoxic T lymphocytes (CTLs) are the primary players 

in adaptive cellular immune responses, responsible for 
effector functions. The monoclonal immunoglobulin 
(idiotype; Id) secreted by myeloma cells is classified as a 
tumor-specific antigen. Some studies have indicated that 
Id-pulsed dendritic cells can generate Id-specific CD8+ 

Fig. 9  Validation of the expression of the 2-gene signature. A T-SNE describes the expression profiles of CKS2 and LYZ in the single cells obtained from 
myeloma tissues. Every point on the graph represents a single cell. The plot can be downloaded from the CancerSEA database. B BCKS2 and LYZ mRNA 
expression in newly diagnosed, non-treated multiple myeloma patients were measured by microarray from GSE39754. C The relative expression levels of 
the 2 genes compared with GAPDH in normal (n = 14) and MM (n = 14) samples (*, p < 0.05; **, p < 0.01). D Knockdown of CKS2 reduced the cell viability 
of MM1.S myeloma cell line. E Knockdown of CKS2 increased the cell apoptosis of MM1.S myeloma cell line. F Invasion and migration ratio of MM cell 
toward two groups through Transwell membranes (5-mm pore size) were assessed. Independent experiments were performed 3 times. n = 5 per group 
(**, p < 0.01; ****, p < 0.0001; vs. CONTROL; ns, no significance)
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CTLs, which can eradicate primary myeloma cells from 
patients [34–36]. However, our results found that the 
high-risk group had a limited infiltration of CTL, and 
DC cells, implying that the absence of immune cells can 
lead to the ineffectiveness of an anti-tumor effect. Pre-
vious research has demonstrated that mice that are not 
provided with BCAAs are unable to generate proper 
antibody and cytotoxic T cell responses [37]. Mean-
while, BCAAs supplementation can bolster the body’s 
defense system by increasing the activity of CD8+T cells 
and the production of DC IL-12 [38, 39]. We considered 
that regulating metabolic pathways and augmenting the 
adaptive immune system may be a viable approach to 
treating MM. Macrophages, a part of innate immunity, 
typically demonstrate M2-like characteristics in multiple 
myeloma, which include limited cytotoxicity, decreased 
antigen presentation, increased angiogenesis and T cell 
inhibition, thus suppressing the immune system [40]. 
Recently, Zhao et al. found that lactate directly activates 
the expression of macrophages M2 related genes through 
histone lactate modification [41]. Consistently, our results 
showed that macrophages M2 cells were significantly up 
regulated in high-risk with MM patients. We speculate 
that lactate may contribute to the progression of MM by 
influencing the immune system’s ability to evade detec-
tion. In conclusion, an aberrant expression of genes asso-
ciated with BCAA and LMRG-related metabolism may 
enable immune evasion [42],thus targeting two metabolic 
pathways to modulate the immune microenvironment is 
a potential strategy for treating multiple myeloma.

Our research also revealed that multiple immuno-
modulators had significantly decreased expression in the 
high-risk group. Granzyme A (GZMA), a protein pro-
duced by cytotoxic lymphocytes, can activate Gasder-
min B protein in a highly precise and efficient manner, 
thus augmenting the body’s antitumor immune response 
[43].CTLs are responsible for the production of PRF1, 
which is able to form holes in the membrane of the tar-
get cell and set off a series of processes that result in its 
destruction [44].ARG1 can effectively reduce arginine in 
serum by transforming it into citrulline and ornithine, 
which leads to a decrease in tumor cell growth in mela-
noma patients who did not respond to anti-PD-1 and 
CTLA-4 therapies, thereby exhibiting antitumor activ-
ity [45]. In addition, TNFRSF9, also known as 4-1BB and 
CD137, belongs to the tumor necrosis factor receptor 
superfamily and has been shown to promote the prolif-
eration of CD8+T, CD4+T and NK cells, and to infiltrate 
these cells into tumors [46, 47]. Based on the above, 
high-risk patients may reduce the anti-tumor effect due 
to a decreased expression of immunomodulators. Thus, 
exploiting immunomodulators as a therapeutic target 
could be a viable option for managing high risk MM.

Stratification survival analysis revealed that the risk sig-
nature possessed an accurate predictive value for prog-
nosis in MM subtypes sorted by risk score, gender, IDH, 
chromosome abnormal, and ISS1 stage. Meanwhile, the 
clinic correlation analysis confirmed that the risk score 
was highly associated with clinical staging and high-risk 
markers. Chromosome 1q amplification is a common 
genetic alteration that is seen in multiple myeloma, and 
is believed to be indicative of a high-risk [48]. The prog-
nosis model created by risk score indicates that the pro-
portion of a 1q chromosome deletion is higher in the 
high-risk group. Evidence suggests that the deletion of 
chromosome 13q14 is associated with the emergence 
and progression of multiple myeloma [49]. Consistently, 
our study verified that patients with a 13q chromosome 
deletion are more likely to be classified as high-risk. 
The International Staging System (ISS) is a commonly 
employed MM staging system in clinical practice, provid-
ing a more precise evaluation of the prognosis of patients. 
Our analysis has demonstrated that the -high-risk group 
has a higher proportion of ISS III patients and a lower 
proportion of ISS I patients than the low-risk group. In 
addition, the ROC curves for the 2-BCAA and LMRG 
related gene signature in both the training and testing 
cohorts had AUC values that were significantly higher 
than 0.65 for 1 and 5-year periods. These results demon-
strated that the risk model created by BCAA and LMRG 
is a reliable indicator of the prognosis of MM.

We identified that LMRG and BCAA-related prognos-
tic DEGs, in MM patients, statistically correlated with 
the overall survival by K-M survival analysis. GSEA anal-
ysis revealed that the DEGs in the high-risk group were 
mainly associated with genes encoding cell cycle-related 
targets of E2F transcription factors, a subgroup of genes 
that are regulated by MYC. MYC mutations are hypoth-
esized to be the source of undetermined significance to 
MM transition, as well as a late genomic event that is 
responsible for tumor progression [50]. To date, studies 
have revealed that MYC can augment the expression of 
genes that facilitate the uptake of nutrients such as glu-
cose and glutamine, in order to generate ATP and absorb 
the fundamental components of the cell, thereby induc-
ing the replication of DNA and cell division [51].TP53 
deletion in Burkitt lymphoma leads to an overexpression 
of MYC, subsequently leading to an overabundance of 
nutrients consumption [52].Research has demonstrated 
that bromodomain proteins inhibition, inhibition of 
MYC translation and ribosomal biogenesis and targeting 
the immune microenvironment are beneficial in treat-
ing myeloma due to their effect on MYC [53, 54]. Several 
drugs targeting MYC have been identified for Multiple 
Myeloma and have been evaluated in clinical trials [55, 
56]. Importantly, the high-risk group exhibited a signifi-
cantly higher CKS2 level than the low-risk group. CKS2, 
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a cyclin-dependent kinase subunit, has been identi-
fied as playing an important role in both cell cycle and 
cell proliferation [57]. JH Xu et al. indicated that CKS2 
might function as a tumor promoter and could serve as 
a promising prognostic biomarker for epithelial ovarian 
cancer [58]. Although, previous research has demon-
strated that there is no association between CKS2 expres-
sion and osteolytic bone disease in MM. However, we 
found that knockdown of the CKS2 inhibited MM cell 
viability, migration, and invasion potential and promoted 
cell apoptosis. It can be regarded as a potential target for 
anti-MM therapy or as a molecular marker of the meta-
bolic abnormal state in our research.

Numerous patients who have been exposed to pro-
teasome inhibitors, immunomodulatory drugs, and 
monoclonal antibodies targeting CD38 have become 
unresponsive to at least one of these treatments [59]. 
Thus, novel drugs with dissimilar methods of action are 
required. Through AutoDock’s molecular docking pro-
cess, it was determined that CKS2 and LYZ possess the 
highest sensitivity to Temozolomide_1375. MM is char-
acterized by frequent chromosomal instability and dys-
functional DNA repair [60]. To enhance the potency of 
genotoxic therapy, suppressing DNA repair is an effec-
tive choice [61]. Temozolomide(TMZ) induces single-
stranded breaks, halts cell division, and triggers apoptosis 
[62]. It is utilized to treat glioma and leukemia [63, 64]. 
Hong-Yuan Shen et al. demonstrated that TMZ pro-
moted DNA damage, cell cycle arrest, and apoptotic 
death in human MM cells and xenograft mice model 
[65]. Recent research has shown that melflufen, a novel 
alkylator, is highly effective in treating MM [66]. They 
have demonstrated that melflufen and other treatments 
such as selinexor, venetoclax, belantamab, mafodotin, 
and, adoptive immunotherapy can significantly improve 
the life expectancy of individuals suffering from MM 
[67]. However, the optimal order and the most effective 
way of treatment remain undetermined. Therefore, prior 
to administering treatment to individuals with MM, it is 
essential to consider the patient’s profile, which includes 
their metabolic and other related indicators. Based on 
the our results, we suggested that Temozolomide may 
be a viable option for addressing the abnormal levels 
of branched chain amino acid and lactate in myeloma 
patients.

Conclusions
In the study, our research has identified genes related 
to branched-chain amino acids and lactate metabolism 
as potential prognostic biomarkers and has developed 
a novel risk signature that is independently associated 
with the overall survival of multiple myeloma patients. 
We conducted an analysis of two genes that are related 
to branched-chain amino acids and lactate metabolism 

as a predictive marker and established its effective-
ness in risk stratification. Nevertheless, our research is 
unavoidably subject to certain limitations. First, the risk 
signature was identified and validated through analysis 
of GEO and TCGA datasets. The efficacy of the BCAA 
and LMRG metabolism-related signature as a prognostic 
indicator for MM patients has yet to be established due 
to the lack of our own relevant data. In order to ensure 
accuracy, external validation should be conducted using 
our own clinic data in the future. Moreover, to estimate 
the proportion of immune cells, bioinformatics analy-
sis was utilized instead of direct measurements from 
peripheral blood and animal models, which may not be 
entirely accurate. Future research will involve clinical and 
laboratory experiments to confirm the precise role of the 
risk signature in the success of immunotherapy for MM 
patients.
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