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Abstract

CircRNAs, a special type of noncoding RNAs characterized by their stable structure and unique abilities to form
backsplicing loops, have recently attracted the interest of scientists. These RNAs are abundant throughout the body
and play important roles such as microRNA sponges, templates for transcription, and regulation of protein translation
and RNA-binding proteins. Renal cancer development is highly correlated with abnormal circRNA expression in vivo.
CircRNAs are currently considered promising targets for novel therapeutic approaches as well as possible biomarkers
for prognosis and diagnosis of various malignancies. Despite our growing understanding of circRNA, numerous ques-
tions remain unanswered. Here, we address the characteristics of circRNAs and their function, focusing in particular
on theirimpact on drug resistance, metabolic processes, metastasis, cell growth, and programmed cell death in renal
cancer. In addition, the application of circRNAs as prognostic and diagnostic biomarkers will be discussed.
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Introduction

In 2020, kidney cancer led to nearly 180,000 new deaths
worldwide, making it one of the most common cancers
[1]. In the United States, it is the eighth most prevalent
cancer, accounting for 4.2% of all new cancer diagnoses
[2]. Renal cell carcinoma (RCC) is the most common
subtype and accounts for between 60 and 80 percent
of all primary renal malignancies [3]. Advanced RCC is
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associated with high morbidity and mortality, but recent
advances in treatment have significantly improved the
prognosis for RCC over the past decade [4]. In particu-
lar, immune checkpoint inhibitors (ICIs) has emerged as
an effective and critical new approach in the treatment
of kidney cancer [5, 6]. However, the growing evidence
of the efficacy of these treatments must be weighed
against their potential toxicity and the risks of over-
treatment, especially as ICIs are now being studied in
non-metastatic settings and in combination with other
agents [7]. Therefore, the discovery of new biomarkers
for tumors is an important and current clinical goal, and
circRNAs have the potential to be valuable indicators of
disease [8, 9].

Long-stranded noncoding RNAs (IncRNA,>200 nt)
and tiny RNAs, such as microRNA (miRNA), are two
types of noncoding RNAs commonly categorized by
size. Noncoding RNAs (ncRNAs) form a group of RNA
that are not translated. Nevertheless, they play a critical
role in various health conditions, particularly cancer [9].
Eukaryotes contain large numbers of CircRNAs, a class
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of naturally occurring long noncoding RNAs. In viroids,
covalently closed CircRNAs were first found in 1976 [10].
They were later discovered to be present in the cyto-
plasm of eukaryotic cells, to have cell- and organ-specific
expression, and to possess significant biological activities
[11, 12]. As sequencing technology improved, the signifi-
cance of circRNAs became more apparent. These specific
IncRNAs harbor a distinctive covalent single-stranded
closed loop arrangement without a 3’ poly(A) tail or 5’
cap, making them more durable than mRNAs and resist-
ant to RNase A degradation [13]. CircRNAs exhibit dual
roles in RCC, functioning as both oncogenes and tumor
suppressors. Their primary mechanism of action involves
acting as molecular sponges for microRNAs. CircRNAs
control gene transcription, alternative splicing, and pro-
tein translation, act as microRNA sponges, and cooperate
with RNA-binding proteins [14].

This review addresses the effects of circRNA produc-
tion on the growth and progression of RCC and provides
a basic overview of its principles. The capability of cir-
cRNAs as predictive and diagnostic biomarkers is also
addressed. Future cancer therapies could benefit from the
important insights and knowledge gained from a deeper
understanding of circRNAs.

CircRNAs

Sanger began studying circRNAs in 1976 [15]. NcRNAs,
previously considered “unique signals,” have received
considerable attention as technology and knowledge have
evolved. Because of their particular circular structure,
circRNAs are more resilient to destruction by nucleic
acid exonucleases than linear RNAs. The structure has
remained largely unchanged throughout development
and evolution.

Biogenesis of CircRNAs

The formation of circRNAs requires specific genomic
features. Firstly, circRNA exons and their adjacent
introns are notably long, averaging three times the
length of canonical linear RNAs. Secondly, these
extended introns must possess inverted complemen-
tary sequence elements, such as inverted repeat Alu
elements, which facilitate the close proximity of down-
stream 5’-donor and upstream 3’-acceptor splice sites
[16]. It is worth noting that the majority of circRNAs
are found within protein-coding genes and consist of
complete exons, suggesting that their transcription is
mediated by RNA polymerase II. The majority of cir-
cRNAs, specifically 84%, are derived from protein-
coding genes. Among these circRNAs, 85% align in
the same sense direction as exons of both coding and
non-coding genes, while 10% align in the opposite anti-
sense direction. The remaining 5% of circRNAs align to
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untranslated regions, introns, or gene loci that have not
been annotated [17]. CircRNAs formed through back-
splicing, a process in which the 3’ splice site of a down-
stream exon is joined to the 5’ splice site of an upstream
exon, creating a continuous loop structure. This differs
from linear RNAs, which have 5’ caps and 3’ polyade-
nylated tails [16].

As a result of splicing of mRNA, precursor transfer
RNAs (pre-tRNAs), intron circular RNAs (ciRNAs),
exon circular RNAs (ecircRNAs), exon intron circular
RNAs (elcircRNAs), and tRNA intron circular RNAs
(tricRNAs) are produced (Fig. 1). Most circRNAs are
ecircRNAs, which are primarily placed in the cytoplasm.
CiRNAs and ElcircRNAs, on the other hand, are mostly
found in the nucleus. Standard models for circRNA loops
include direct splicing back, lasso-driven circulariza-
tion, and circularization mediated by RNA-binding pro-
teins [14]. EcircRNAs are predominantly produced by
direct backsplicing, a cleavage process in which a loop
is formed in the precursor mRNA by covalently linking
the upstream 3’ splice acceptor site to the downstream
5’ splice donor site of the exon. This procedure creates
a closed circRNA loop by generating a lariat splice loop,
followed by shearing of the intron [18]. EIcircRNAs also
apply the direct backsplicing method, but during back-
splicing, some intron sequences are retained within the
circRNA instead of being removed [19].

It is assumed that ciRNAs arise from the synthesis of
lassos from introns deleted during splicing of the pre-
mRNA. Synthesis of these ciRNAs can be amplified by
expression vectors that rely on a consensus motif con-
sisting of an 11 nucleotide C-rich component near the
branch point and a 7 nucleotide GU-rich sequence near
the 5" splice site [20]. RNA-binding proteins (RBPs) con-
tributed in circRNA formation include RNA-editing
enzyme, muscle blinding protein 1, and fusion sarcoma
protein [21, 22]. RBPs can dimerize and drive exon loops
by binding to specific motifs in nearby introns [22]. Com-
prehensive transcriptome analyses revealed that 60% of
human genes produce both linear and circular transcripts
[23]. Canonical splice sites are used for circRNA biogen-
esis, and linear splicing of mRNAs competes with back-
splicing. CircRNA transcription levels are often lower
than mRNA transcription levels. Under normal physi-
ological conditions, circRNA expression increases when
backsplicing activity decreases and the efficiency of spli-
ceosome components is reduced [24]. Exons in circular
RNAs and the introns surrounding them are longer than
those in linear RNAs. These elongated introns include
inverted complementary sequence elements, for instance
inverted Alu components, that promote the proximity
of upstream 3-acceptor and downstream 5-donor splice
sites [16].
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Fig. 1 Biogenesis of CircRNA. Pre-mRNA experience either back-splicing, which produces both a circRNA and an alternatively spliced linear RNA
without an exon, or typical splicing, which produces a linear RNA with an exon. CircRNAs can form in one of three ways during biogenesis: EICIRNAs,
ecircRNAs, and ciRNAs. The process of direct backsplicing, in which the upstream 3’ splice acceptor site is covalently connected to the downstream
5’ splice donor site of the exon, leads to looping of the precursor MRNA, often resulting in ecircRNAs. Direct backsplicing is also used by ElcircRNAs,
although backsplicing leaves certain intron sequences in the circRNA instead of deleting them. Removal of introns during splicing of pre-mRNA

is thought to be the cause of ciRNA formation. TricRNA is a type of circular RNA formed by the splicing process of precursor tRNA

CircRNA degradation and exosome release
Because of their unique circular structure, circRNAs are
largely resistant to degradation. However, our under-
standing of the mechanisms by which they are degraded
is still evolving. The mechanisms of circRNAs disintegra-
tion and extracellular vesicle discharge are summarized
in Fig. 2. Certain circRNAs are degraded when they bind
to miRNAs and are cleaved by Argonaute-2 (AGO2) [25].
Others are degraded by certain RNases after N6-meth-
yladenosine (m6A) modification [26]. The core com-
plex consisting of the N6 adenosine methyltransferase
METTL3-METTL14 can make m6A modifications to
circRNA transcripts, allowing cleavage by the YTHDEF2-
HRSP12-RNaseP/MRP complex in the cytoplasm [27].
Several decay mechanisms are linked to the second-
ary structures of circRNAs [28]. In cases where there
is no viral infection, circRNA-RNA duplexes bind and
hamper double-stranded RNA-activated protein kinase
(PKR) due to ribonuclease L (RNase L) inactivity. RNase
L cleaves circRNAs during viral infection, releasing and
activating PKR, which is an important component of the
initial innate immune response. Thus, activation of PKR
is a direct consequence of circRNA degradation. Another
degradation mechanism involves RBPs such as Ras
GTPase-activating protein-binding protein 1 (G3BP1)
and Regulator of Nonsense Transcripts 1 (UPF1) [29].
These RBPs bind circRNAs and unravel them, leading
to their degradation, which is facilitated by the helicase

activity of UPF1. This degradation depends on structure
rather than RNA sequence.

When multivesicular endosomes fuse with the cell
membrane, some circRNAs are packaged into tiny
extracellular vesicles and released into the extracellu-
lar environment. [30-32]. It is possible that these circR-
NAs are also unleashed as extracellular vesicles, but this
needs further investigation [33]. Exosomes usually con-
tain more circRNAs than the cells from which they are
derived. Because exosomes can be detected in the kidney
and are released throughout the nephron, it is reason-
able to conclude that changes in circRNA concentration
in exosomes detected in urine could provide important
information about overall renal health [34]. Therefore,
circRNAs in urine could serve as valuable noninvasive
biomarkers of kidney disease.

Detection and identification of CircRNAs

Over 100,000 distinct circRNAs have been detected
in human [35]. Their unique circular structure, lack of
3’ poly (A) tails and 5’ caps, and low abundance make
detection by conventional methods difficult [36]. The
first detections were made using Northern blotting and
PCR methods [37]. Northern blotting, considered the
gold standard, distinguishes circRNAs from linear RNAs
by denaturing polyacrylamide gel electrophoresis and
hybridization of RNA probes [16]. However, this tech-
nique suffers from low throughput and difficulties in
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Fig. 2 Disintegration of CircRNA and Extracellular Vesicle Discharge. A Certain circular RNAs (circRNAs) may be subject to degradation

through targeted microRNA (miRNA) interaction, followed by argonaute-2 (AGO2)- facilitated RNA slicing. B CircRNAs carrying N6-methyladenosine
(m6A) alterations may be detected and severed by the HRSP12-YTHDF2-RNase P/MRP complex. C RNA duplex structures (16-26 base pairs)

of CircRNA may latch onto and hinder the functionality of double-stranded RNA-triggered protein kinase (PKR). In viral infection, RNase L

is produced, breaking down the circRNAs, leading to PKR release and activation, crucial in the early stages of the innate immune response. D

RNA binding proteins like Ras GTPase-activating protein-binding protein 1 (G3BP1) and regulator of nonsense transcripts 1 (UPF1) can bind

via secondary structure mediation to unravel circRNAs, allowing UPF1’s helicase activity to cleave them. E CircRNAs may be encapsulated

in exosomes and expelled into the extracellular region following the fusion of multivesicular endosomes with the cellular membrane

detecting rare circRNAs [38]. RT -qPCR is commonly
used for circRNA analysis but can produce misleading
signals due to structural changes and rolling circle repli-
cation [39].

Newer techniques, such as rolling circle amplifica-
tion (RCA), take advantage of the circular structure of
circRNAs [40]. RCA offers simplicity, cost-effective-
ness, and specificity in amplifying target circRNAs [41].

Enzyme-based detection reduces primer dependence by
using duplex-specific nucleases (DSNs) to cleave DNA/
circRNA hybrids, thereby enhancing fluorescence upon
detection of the target circRNA [42]. NanoString Tech-
nologies’ nCounter assay allows accurate quantification
of circRNA by hybridization with two probes. However,
it requires expensive equipment [43]. Microarrays offer
high-throughput detection but can pose problems when



Huang et al. Cancer Cell International (2023) 23:288

comparing data from different studies [44]. The subcel-
lular localization of RNA can be determined by fluores-
cence in situ hybridization (FISH), which is, however,
expensive and time-consuming [44, 45]. RNA-seq tech-
nology has greatly improved the identification of circR-
NAs [46]. However, circRNAs need to be biochemically
enriched before short-read deep sequencing due to their
low in vivo abundance and lack of poly (A) tails [47].
RiboRNA-seq provides valuable expression data but
cannot differentiate signals from linear and circRNAs
in exonic regions [48]. Small circRNAs can be detected
using poly (A)-RNA-seq, but unusual circular isoforms
cannot be precisely identified or quantified using this
method [49]. RNase R-RNA-seq can improve circRNA
enrichment compared with ribo-or poly (A)-RNA-seq
[16]. Overall, an efficient, accurate, and sensitive method
for circRNA research remains to be developed.

Functions of CircRNAs

MiRNA sponges

The role of circRNAs as miRNA sponges has been a
major focus in research. An overview of functions of cir-
cRNAs has been displayed in Fig. 3. By binding to the
3-untranslated regions (3'UTR) of mRNA, miRNAs, a
large class of small noncoding RNAs, can control gene
expression and translation [50]. According to studies,
circRNAs have the ability to bind to miRNAs and com-
pete with mRNA for these interactions by serving as
miRNA sponges and subtly influencing gene expression
[51, 52]. This process increases mRNA production and
subsequent protein translation [53]. CiRS-7, a well-stud-
ied circRNA, harbors over 70 miR-7 binding sites and
reportedly binds to miR-139-3p, thereby promoting RCC
progression and metastasis via the PI3K/AKT pathway
[54]. Similarly, circEYA3 increases c-Myc expression by
sequestering miR-1294, which leads to increased CDC42
expression and promotes the invasion and migration of
clear cell renal cell carcinoma (ccRCC) [55]. CircFAT1
increases the expression of YES -associated protein 1 via
its miR-375 binding sites, and its silencing decreases cell
proliferation, migration and invasion [56]. CircRNA bio-
genesis competes with splicing of pre-mRNA and affects
its expression. It depends on conventional splice sites and
spliceosome mechanisms.

Research shows that circRNAs can regulate gene
expression in various stages of different malignancies.
ElcircRNAs enhance transcription of parental genes
through interactions with the polymerase II complex
and small nuclear Ul ribonucleoproteins (Ul snRNPs)
[57]. CircDONSON activates the NURF complex to start
the synthesis of SOX4, which promotes the growth of
gastric cancer [58]. CircRHOT1 expression accelerates
hepatocellular carcinoma (HCC) growth and metastasis
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by initiating NR2F6 transcription. Suppression of Cir-
cRHOT1 decreases proliferation and metastasis of
hepatoma cells [59].

Interaction with proteins

Besides their role as miRNA sponges and interaction
partners of polymerase II complexes, circRNAs also pos-
sess the ability to bind proteins [60]. In their function as
protein sponges, circRNAs can indirectly modulate RNA,
with certain circRNAs that have minimal miRNA-bind-
ing sites playing a critical role in protein binding. Inter-
estingly, however, the binding of RBP to circular RNA is
less tight than to linear mRNA [61]. CircFoxo3, for exam-
ple, which is exceedingly expressed in noncancerous
cells, is involved in cell cycle regulation [62]. It binds to
P21 and CDK2 to form a ternary complex that inhibits
cell cycle progression. Moreover, increased circAmotll
expression in newborn cardiac tissue may enhance AKT
activity and promote cardiomyocyte survival. As a result
of circAmotl1 binding to PDK1, AKT, and AKT1 is phos-
phorylated and transported to the nucleus [63].

Translation of circRNAs

While circRNAs function as noncoding RNAs and typi-
cally lack the 5" cap, 3’ poly (A) tail, or clear open read-
ing frame (ORF) required for translational regulation,
recent studies have shown that they can indeed code for
proteins [64]. CircRNAs can not only bind proteins but
also function as miRNA sponges and interacting parts
of polymerase II complexes. This process is facilitated by
a specific sequence that allows the incorporation of an
artificial internal ribosome entry site (IRES) upstream of
the start codon, which immediately initiates translation
through the ribosome [65]. In addition, the presence of
N6-methyladenosine (m6A)-methylated adenosine resi-
dues that bind directly to eIF3 has been shown to facili-
tate circRNA translation [64]. CircZNF609, a distinct
regulator of myogenic cell proliferation, is a typical exam-
ple. It features an ORF that has the same start codon as
its linear equivalent and a stop codon in the ORF that is
a product of backsplicing at the termination point. Asso-
ciation with heavy polysomes converts CircZNF609 into
a protein in a manner that is both splice-dependent and
cap-independent, shedding light on the occurrence of
protein-coding circRNAs in eukaryotes [66]. In addition,
Zhang and his team made a breakthrough discovery:
circSHPRH is able to synthesize a new functional protein,
SHPRH-146A, which plays an important role as a tumor
suppressor in glioblastoma [67].

The role of circRNAs in RCC
CircRNAs are critical for the growth and progression of
renal cancer. Through RNA-seq research, scientists have
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discovered about 2000 circRNAs that are differentially
expressed in RCC [68]. These circRNAs are involved in
a range of cellular functions in renal cells, such as cell
proliferation, metastasis, epithelial-mesenchymal transi-
tion (EMT), apoptosis, and metabolism (Fig. 4). Table 1
provides most interesting reports of circRNAs in RCC. In
the following section, we review how circRNAs regulate
these cellular functions and the molecular causes under-
lying RCC.

Cell cycle
Research suggests that dysregulated circRNA expres-
sion is associated with uncontrolled proliferation of
renal cancer cells and interruption of cell cycle control.
For example, increased circ000926 expression in renal
cancer cells correlates with unfavorable patient out-
come [80]. Suppression of Circ 000926 hinders xenograft
growth and reduces renal cancer cell growth. By directly
inhibiting miR-411, it serves as a miRNA sponge and
enhances CDH2 expression. When CircEGLN3, which
is overexpressed in renal cancer, is suppressed, prolifer-
ation of ACHN and 769-P renal cancer cells is reduced
[79]. CircEGNLS3 functions as a miRNA sponge for miR-
1224-3p, which consequently increases the expression
of HMGXB3, decreases the inhibitory effect of miR-
1224-3p on renal cancer, and promotes cell cycle and
metastasis. In separate studies, circSCARBI levels were
shown to be increased in various RCC cell lines and RCC
tissue [76]. CircSCARBLI interaction with miR-510-5p
and SDC3 (a miR-510-5p target) facilitates cell growth
inhibition caused by circSCARBI silencing.
Simultaneous transfection with SDC3 partially coun-
teracts the regulation of cell proliferation, whereas trans-
fection with a miR-510-5p mimic decreases both SDC3
expression and cellular expansion. Moreover, overexpres-
sion of circMTO1 reduces the growth of 786-O and A498
renal cancer cells, whereas suppression of circMTO1
accelerates the development of OS-RC-2 and SN12C
renal cancer cells [74]. MiR-223 and miR-9 are absorbed
by circMTO1, which decreases their levels. Inhibition
of circMTO1 promotes RCC cell growth by reducing
LMXI1A, a target of miR-9. MiR-9 has been shown to
control LMX1A expression in RCC by transfection with
a miR-9 mimic. Overexpression of a miR-9 inhibitor and
LMXI1A counteracts the tumour-promoting effect of
circMTOL1 silencing. Similarly, circTLK1 was discovered
as a novel circRNA candidate formed by the TLK1 gene
by high-throughput sequencing of circRNAs in renal
cancer cell lines [73]. RCC cells have high expression of
CircTLK1, and its silencing inhibits RCC cell growth.
RCC patients with advanced TNM stage and high circ-
SDHC expression in tissues detected by GSE100186
and GSE137836 sequencing have a poor prognosis [72].
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In vivo and in vitro and, circSDHC promotes tumor cell
proliferation.

Competition between circSDHC and miR-127-3p for
binding was demonstrated using luciferase reporter
assays and RNA pulldown to prevent suppression of E2F1
and CDKN3 signaling pathways leading to metastasis of
RCC. When circSDHC expression is reduced, CDKN3
expression also decreases, suppressing E2F1 signaling,
which can be restored by using a miR-127-3p inhibitor.
CirCHT15 has been shown to be an accurate predictor
of both overall survival (OS) and progression-free sur-
vival (PES) after surgical resection of ccRCC [72]. Both
renal cancer cell lines and ccRCC tissues show signifi-
cant expression level of CirCHT15. Data from in vivo and
in vitro experiments propose that CirCHT15 is a factor in
the growth of ccRCC cells. CirCHT15 controls EIF4EBP1
expression through direct interaction with miR-125a-5p.
CircDVL1 is not positively associated to the malignant
characteristics of ccRCC and is expressed at low levels in
sera and tissues of ccRCC cases [86]. Overexpression of
circDVL1, which also leads to arrest of G1/S phase, pre-
vents proliferation of many ccRCC cells. In ccRCC cells,
circDVLI acts as a miRNA sponge for oncogenic miR-
412-3p and blocks its ability to inhibit PCDH?7.

Metastasis and EMT

Cancer cell invasion and metastasis, two crucial pro-
cesses in the development and progression of renal can-
cer, have been found to be regulated by circRNAs [87].
Thus, a possible link between reduced circPSD3 levels
and tumor metastasis in ¢ccRCC patients is suggested
by a decrease in circPSD3 expression in ccRCC tis-
sues [88]. CircPSD3 significantly reduces cell invasion,
migration and EMT under laboratory conditions and
prevents lung metastasis in animal models. CircPSD3
and miRNA-25-3p interact in regulating FBXW7
expression. CircPSD3 serves as a potential target for
the diagnosis and treatment of ccRCC by blocking the
miR-25-3p/FBXW7 pathway, thereby arresting tumor
growth. Despite uncertainty about circRAPGEF5 role
in RCC, a study with data from 245 patients with this
disease found a favorable correlation between aggres-
sive clinical features and decreased circRAPGEF5
expression [78]. The circRAPGEF5/miR-27a-3p/TXNIP
pathway was observed to inhibit RCC growth and pro-
gression. In ACHN, 786-O, and A498 cell lines and
RCC tissues, one study discovered that circ0001368
expression was reduced [77].

The findings indicate that circ0001368 targets miR-492
which directly effects LATS2 by binding to the 3'UTR
region of LATS2. Overexpression of miR-492 promoted
cell invasion, while suppression of miR-492 inhib-
ited it. Prior studies have shown that LATS2 attenuates
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hepatocellular carcinoma via the DNMT1/EZH2 pathway
and reduces metastasis of glioma cell by enhancing tafaz-
zin [77]. Overexpression of LATS2 dramatically reduces
the ability of ACHN and 786-O cells to proliferate and
invade. By scavenging miR-492, circ0001368 increases
LATS2 expression while reducing growth and invasion
of renal cancer cells. Furthermore, the circSCARB1/
miR-510-5p/SDC3 signaling pathway facilitates renal
carcinoma cell invasion and migration [76]. In vivo and
in vitro studies have shown that circUBAP2 expression
is significantly reduced in ccRCC [75]. Significant reduc-
tion in ccRCC cell invasion and migration is achieved by
increased circUBAP2 expression. MiR-148a-3p counter-
acts the inhibitory effect of CircUBAP2 on ccRCC cell
invasion and migration. CircUBAP2 serves as miRNA
sponge for miR-148a-3p. Moreover, the miR-148a-3p
target gene FOXK2 has been shown to suppress ccRCC
cells by reversing the effect of miR-148a-3p inhibitor
[75]. Moreover, circUBAP2 controls the miR-148a-3p/
FOXK2 pathway to significantly limit tumor growth in
ccRCC cells [75]. In ccRCC, circAKT3 was consistently
downregulated. Sequencing of 60 ccRCC tissues, sur-
rounding normal tissues, ccRCC cell lines, and another
60 tissue samples led to this discovery [81]. Overexpres-
sion of circAKT3 prevented ccRCC metastasis, whereas
knockdown of circAKT3 stimulated ccRCC invasion and
migration. The miR-296-3p/E-cadherin signaling path-
way is blocked by circAKT3, which prevents the spread
of ccRCC.

According to one study, circTLK1 is mainly present
in the cytoplasm, and high expression positively cor-
relates with distant metastases and poor prognosis
for patients. MiR-136-5p sponging positively controls
expression of CBX4 [73]. The suppression of RCC cell
phenotype by prevention of circTLK1 is reversed by
increased CBX4 expression. Moreover, there is a posi-
tive association between the expression level of VEGFA
and CBX4 in RCC tissues. Significantly less VEGFA was
expressed in RCC cells when CBX4 was knocked down.
In another study, circESRP1 expression was shown to
be low in renal cancer cells and tissues and was nega-
tively related with tumor size, TNM stage, and distant
metastasis of renal cancer [70]. CircESRP1 interacts with
miR-3942 in a competitive manner that controls CTCF
downstream. CTCF specifically enhances transcription
of circESRP1, modulates the circESRP1/miR-3942 axis,
and forms a positive feedback loop. By c-Myc-driven
EMT, this signaling system controls the behavior of
ccRCC cells. CircMYLK, which is particularly upregu-
lated in RCC, associates with miR-513a-5p and promotes
VEGEFC production, facilitating tumorigenesis of RCC
cells [89]. Metastasis of RCC is stopped by silencing circ-
MYLK both under laboratory conditions and in animal
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models. Upregulation of circTXNDCI11 is associated
with advanced TNM stage and lymph node metastasis in
RCC. Inhibition of circTXNDC11 slows cell invasion and
metastasis under laboratory conditions [90]. By stimulat-
ing the MAPK/ERK pathway, CircTXNDC11 promotes
RCC invasion and migration.

Apoptosis

In renal cancer cells, circRNAs were discovered to have
an effect on apoptosis. Increase in miR-130a-3p expres-
sion promotes RCC cell death because it is abnormally
low in RCC cells [91]. Luciferase reporter assays and RNA
pulldown proved that miR-130a-3p and circ0054537
directly interact. Circ0054537 and miR-130a-3p work
together to control the oncogene c-Met, which is sup-
pressed by miR-130a-3p and affects the development and
spread of RCC tumors. Similarly, significant circSCARB1
expression was found in RCC cells, and knockdown of
circSCARB1 causes apoptosis in A498 and 786-O cell
lines [91]. Increased expression of Circ0005875 was
observed in RCC. When this circular RNA is knocked
down, the expression of miR-502-5p increases, leading
to higher apoptosis propensity in renal cancer cells [69].
Sequencing revealed high circEGLN3 levels in RCC tis-
sues and cell lines, indicating a negative prognosis for
RCC patients [92]. RCC cells undergo apoptosis when
CircEGLNS3 is silenced. CircEGLN3, which is mainly
placed in the cytoplasm, blocks RCC development by
targeting miR-1299, which alters IRF7 level. Circ001842
is also overexpressed in RCC and contributes to disease
development via an SLC39A14-dependent miR-502-5p
pathway [93]. When circ001842 is silenced, RCC cells are
driven into apoptosis. In another study, circNUP98 was
found to be preferentially increased in 78 paired RCC
tumors compared to nearby normal tissues. Inhibition of
circNUP98 increased miR-567 expression, slowed RCC
cell growth, and decreased PRDX3 levels [94]. In addi-
tion, STAT3 was found to promote circNUP98 in RCC
cells. The new STAT3/circNUP98/miR-567/PRDX3 path-
way exploits the CircNUP98 oncogene as a therapeutic
target and possible biomarker for the treatment of RCC.

Metabolism

CircRNAs have been displayed to control the metabo-
lism of renal carcinoma cells. Circ0035483, for exam-
ple, is overexpressed in renal cancer cells and tissues.
Circ0035483 overexpression can promote glycolytic
metabolism in RCC cells, as shown by the fact that a
decrease in Circ0035483 expression reduces lactate pro-
duction and glucose consumption in RCC cells [94]. In
RCC cells, circ0035483 is turned off when miR-31-5p
is overexpressed. By negatively regulating HMGAL,
miR-31-5p inhibits the ability of RCC cells to become
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malignant. Due to the high expression of circFOXP1 in
RCC tissues and cell lines, downregulation of circFOXP1
inhibits glycolysis in renal cancer cells [83]. The miR-
423-5p/U2AF2 pathway is activated by ZNF263, which
is upstream of circFOXP1 and promotes renal carcinoma
development. According to this study, RCC tissues and
cells had higher levels of circ0054537, which was mainly
found in the cytoplasm [84]. Glycolysis is inhibited and
apoptosis is promoted in RCC cells when the circ0054537
gene is knocked down. Circ0054537 attaches to miR-
640 and targets NPTX2, as demonstrated by luciferase
reporter.

Yang and colleagues reported that the level of
circ0000069 was abnormally high in RCC tissues and
cells. Reduction of circ0000069 led to a decrease in pro-
liferation, metastasis, and glutamine metabolism of RCC
cells [85]. In addition, circ0000069 was found to act as a
sponge for miR-125a-5p, and inhibition of miR-125a-5p
mitigated the impacts of circ0000069 reduction on the
malignant behavior of RCC cells. The study also identified

SLC1AS5 as a target gene of miR-125a-5p. Higher expres-
sion of miR-125a-5p suppressed RCC cell progression,
whereas increasing SLC1A5 counteracted this effect.

Clinical application of circRNAs

Numerous studies have recognized the diagnostic capa-
bility clinical relevance of circRNAs expression in RCC.
For instance, circ0001451 was highlighted for its prom-
ising diagnostic marker for ccRCC with an area under
the receiver operating characteristic curve (AUC-ROC)
of 0.70, complemented by a specificity of 0.60 and sen-
sitivity of 0.75 [95]. CircHIPK3 was also identified as a
potential diagnostic marker and has a remarkable AUC
of 0.95 for ccRCC [96]. In addition, research suggests that
the combination of circRNAs with linear transcripts may
provide greater diagnostic value compared to single cir-
cRNAs. For example, Franz et al. identified circNOX4,
circEGLN3, and circRHOBTB3 as potential diagnos-
tic biomarkers. The AUC-ROC values of circRHOBTB3
and circNOX4 and in RCC tissues were 0.82 and 0.81,
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respectively [97]. However, circEGLN3 displayed higher
reliability with an AUC-ROC of 0.98. More impressively,
simultaneous detection of linEGLN3 and circEGLN3

resulted in an improved AUC-ROC of 0.99, correspond-
ing to a sensitivity of 95% and a specificity of 99%. A
meta-analysis by Rashedi et al. evaluated 8 studies with



Huang et al. Cancer Cell International ~ (2023) 23:288 Page 10 of 15

Table 1 Interesting reports of circRNAs in RCC

CircRNA Target miRNA miRNA target gene/ Expression Function Reference

sponge

Circ0005875 miR-502-5p ETST Up Cell Cycle(+) [69]
Metastasis(+)
Apoptosis(—)

CircESRP1 miR-3942 CTCF Down Cell Cycle(-) [70]
Metastasis(-)

CircCHST15 miR-125a-5p EIF4EBP1 Up Cell Cycle(+) [71]
Metastasis(+)

CircSDHC miR-127-3p CDKN3/E2F1 Up Cell Cycle(+) [72]
Metastasis(+)

CircTLK1 miR-136-5p CBX4 Up Cell Cycle(+) (73]
Metastasis(+)

CircMTO1 miR-9 LMX1A Down Cell Cycle(-) [74]
Metastasis(-)

CircUBAP2 miR-148a-3p FOXK2 Down Cell Cycle(-) [75]
Metastasis(-)

CircSCARB1 miR-510-5p SDC3 Up Cell Cycle(+) [76]
Metastasis(+)

Circ0054537 miR- 130a-3p cMET Up Cell Cycle(+) [66]
Metastasis(+)

Circ0001368 miR-492 LATS2 Down Cell Cycle(-) 771
Metastasis(-)

CircRAPGEF5 miR-27a-3p TXNIP Down Cell Cycle(-) [78]
Metastasis(-)

CircEGLN3 miR-1224-3p HMGXB3 Up Cell Cycle(+) [79]
Metastasis(+)

Circ000926 miR-411 CDH2 Up Cell Cycle(+) [80]
Metastasis(+)

CircAKT3 miR-296-3p E-cadherin Down Metastasis(-) [81]

Circ0035483 miR-31-5p HMGA1 up Glycolysis(+) [82]

CircFOXP1 miR-423-5p U2AF2 up Glycolysis(+) (83]

Circ0054537 miR-640 NPTX2 up Glycolysis(+) [84]

Circ0000069 miR-125a-5p SLCTAS upP Cell Cycle(+) (85]
Metastasis(+)

604 RCC cases and 527 controls to investigate the diag-  expression of circTLK1 [73], circNUP98 [94], and

nostic value of circRNAs for RCC detection. The results
showed that circRNAs have the potential to be used as
diagnostic biomarkers for RCC tissue samples, with a
pooled sensitivity, specificity, and AUC of 0.84, 0.84, and
0.91, respectively. This suggests that circRNAs are highly
accurate in detecting RCC in tissue samples. However,
the accuracy of circRNAs as diagnostic biomarkers for
body fluid (serum and urine) specimens was moderate,
with a sensitivity, specificity, and AUC of 0.78, 0.69, and
0.71, respectively. This suggests that circRNAs are less
accurate in detecting RCC in body fluid samples [98].
Certain circRNAs have been shown to be impor-
tant prognostic biomarkers, influencing outcomes such
as OS, DFS, and PFS. Li et al. reported that increased
circPRRC2A expression was a distinct risk factor for
decreased OS and metastasis-free survival [99]. It was
also found that patients with RCC who have increased

¢irc0085576 [100] have reduced OS and DFS rates. On
the other hand, lower expression of circRAPGEF5 has
been correlated with unfavorable OS and RFS in patients
with RCC [78]. In addition, Frey et al. found that low
circNETO2 and high circEHD?2 levels independently pre-
dicted a decline in PFS, OS, and cancer-specific survival
in patients with ccRCC undertaking nephrectomy [101].
In addition, it was observed that patients with ccRCC
who had higher circ101341 and circ-ABCB10 expression
showed worse OS than patients with lower expressions
[102]. Similarly, Zeng et al. reported lower survival rates
in patients with high circ001842 expression, suggesting a
positive correlation with RCC severity [93]. Interestingly,
circEHD?2 is highly expressed in ccRCC tissues but rarely
detected in normal adjacent kidney tissues that it may
be a specific biomarker for prognosis of ccRCC patients.
High circEHD2 levels are an independent prognostic
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factor for OS and PFS in patients with ccRCC [103]. A
recent meta-analysis found that tumor promoter circR-
NAs were associated with reduced OS, while tumor sup-
pressor circRNAs were linked with better OS in RCC
patients. These results were consistent in the multivari-
ate analysis. Similar findings were obtained for DFS/PFS/
RFS, with tumor promoter circRNAs being correlated
with poor DFS/PFS/RFS and tumor suppressor circRNAs
being associated with improved DFS/PFS/RES in the uni-
variate analysis. These findings were also consistent in
the multivariate analysis [98].

In a microarray study of ccRCC tissue, a circRNA
signature involving circNOX4, circRHOBTB3, and
circEGLN3 was identified as a potential prognostic bio-
marker for cancer-specific, recurrence-free, and overall
survival, with a reference of [104]. This signature demon-
strated improved predictive accuracy compared to clini-
cal models based on clinicopathological factors. Notably,
the expression of circEGLN3 showed a high accuracy of
97% in discriminating between malignant and normal
tissue. Another study reported that increased expres-
sion of circEGLN3 was associated with shorter survival
in patients with RCC, with a reference of [39]. In patients
with ccRCC, the circRNA circ-ABCB10 was found to be
upregulated in tumor tissues compared to adjacent tis-
sues. High expression of circ-:ABCB10 correlated with
advanced pathological grade and TNM stage and served
as an independent predictor of worse overall survival in
these patients, with a reference of [105]. Furthermore,
mRNA expression of METTL14 was found to negatively
correlate with TNM stage and positively correlate with
overall survival in patients with RCC, with a reference
of [106]. Rashedi et al. analyzed 26 studies with a total of
2048 patients with RCC and found that 6 circRNAs were
downregulated and 18 circRNAs were upregulated in
RCC tissues. The downregulated circRNAs were associ-
ated with smaller tumor size, lower T stage, less lymph
node metastasis, less distant metastasis, and lower TNM
stage. The upregulated circRNAs were correlated with
higher T stage, more lymph node metastasis, more dis-
tant metastasis, and higher TNM stage [98].

The problem of drug resistance is currently a major
challenge in cancer therapy and requires urgent attention
[107]. Circsnx®6, a particular circular RNA, is particularly
abundantly expressed in sunitinib-resistant RCC cells
[108]. It is thought to play a role in sunitinib resistance
by modulating the level of lysophosphatidic acid within
cells. Since CircSNX6 interacts with the Ul snRNP to
upregulate ME1 expression and induce drug resistance
in RCCs, CircME1 could be used as a biomarker to pre-
dict sunitinib resistance and as a therapeutic target for
ccRCC [109]. Gemcitabine resistance in RCC and the
high expression level of circ0035483 are associated [110].

Page 11 of 15

Gemcitabine, a chemotherapeutic agent that is a deoxy-
cytidine nucleoside analog, shows remarkable thera-
peutic efficacy against RCC. However, drug resistance is
often a major problem. Overexpression of circ0035483
has been found to stimulate gemcitabine resistance by
increasing cyclin Bl expression by sequestering miR-
335 in RCC [110]. In addition, reduced expression of
¢irc0035483 was found to inhibit cellular glycolytic activ-
ity [82]. Increased glycolytic activity is a common feature
of proliferating cells and is often targeted in renal cancer
therapies. Therefore, circ0035483 has the potential to
circumvent gemcitabine resistance and affect glycolytic
activity in RCC treatment. Nevertheless, our knowledge
of the role and mechanisms of circRNAs in the develop-
ment of anticancer drug resistance is still at an early stage
and remains to be fully explored.

One potential therapeutic approach involves modulat-
ing native pathogenic circRNAs through methods such as
silencing or overexpression by artificial circRNAs. These
artificial circRNAs can be engineered to act as miRNA
sponges, generate circular versions of native linear RNAs
with therapeutic effects, translate proteins, modulate the
immune system, control protein activity (as aptamers),
control transcription or splicing, and replicate autono-
mously following in vivo delivery [111]. Silencing circR-
NAs, such as apoptosis-related circRNA (circHIPK3),
circFoxo3, and cZNF609, mitochondrialfission, and
using short hairpin RNA has shown beneficial effects in
various disease models [111]. The CRISPR-Cas genome
editing system has also been used to generate a mouse
model with knockout of ciRs-7 [112]. Other approaches
to silencing circRNAs include using antisense oligonu-
cleotides (AONSs) that bind to circRNAs and inhibit their
interactions with target molecules, as well as antago-
nists that block the molecular interactions of circRNAs
by shielding binding sites for proteins or miRNAs [113].
On the other hand, overexpression of circRNAs can be
achieved by packaging them into extracellular vesicles
for use as delivery vectors or by injecting an expression
plasmid conjugated with colloidal gold nanoparticles, as
demonstrated for circFoxo3 [114].

Nanoparticles have emerged as potential delivery sys-
tems for circRNA-based therapeutics, offering advan-
tages such as improved stability, enhanced intracellular
entry, and reduced immunogenicity of these molecules.
In a mouse study, gold nanoparticles (PEG-AuNDPs)
conjugated with short interfering RNA (siRNA) target-
ing circDnmtl demonstrated the ability to effectively
suppress tumor growth and cellular autophagy [115].
Another study revealed that using AuNPs to deliver
AONSs, which block the binding sites on circCcnbl for
Ccnbl and Cdkl, resulted in inhibited tumor growth and
increased mouse survival [116]. These findings highlight
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the potential of nanoparticles as promising delivery
systems for circRNA-targeting agents in renal cancer.
In addition to nanoparticles, exosomes have also been
investigated as carriers for circRNA-based therapeu-
tics and circRNA expression vectors. Exosomes, small
vesicles secreted by cells, contain various biomolecules
including circRNAs. They play a crucial role in intercel-
lular communication and can be engineered to deliver
therapeutic molecules to specific target cells. However,
further research is necessary to optimize the properties
of nanoparticles and exosomes to ensure efficient and
effective delivery of circRNA-based therapeutics in the
context of renal cancer [24].

Therapeutic approaches utilizing circRNAs have pri-
marily been investigated in preclinical studies. How-
ever, several challenges must be addressed before fully
realizing the therapeutic potential of these approaches
[117]. One significant concern with RNA interference
(RNAi)-based strategies is the potential for off-target
gene silencing, similar to the miRNA-like effect induced
by small molecules like siRNA. The targeting of tran-
scripts by siRNA relies on partial complementarity, typi-
cally occurring between the 3’ UTR of the transcript
and the seed region of the siRNA [118]. While circRNA
knockdown experiments often confirm that correspond-
ing linear mRNA levels remain unaffected, off-target
effects beyond their linear counterparts are less predict-
able. Ongoing research focuses on designing siRNA mol-
ecules to mitigate off-target effects in RNAi approaches
[119]. It is important to note that while many circRNAs
exhibit tissue- or cell-specific expression patterns, some
circRNAs are present in multiple tissue or cell types, pos-
ing challenges when employing common targeting strat-
egies that may inadvertently affect off-target tissues or
cells [120]. Another consideration is the safety of using
PEG as vehicles for delivering circRNA-targeting agents
or circRNA plasmids in animal models, as their poten-
tial clinical use remains uncertain due to inconsistent
conclusions regarding their toxicity from previous stud-
ies [121]. While there is significant interest in applying
circRNA research findings to clinical scenarios for early
disease diagnosis and prognosis prediction, it is essential
to conduct large-scale clinical studies to validate the reli-
ability and sensitivity of these circRNA biomarkers.

Conclusions

To thoroughly evaluate the therapeutic potential of cir-
cRNAs in RCC, further research is needed, including
multicenter validation and larger sample size. The discov-
ery of additional circRNAs and the elucidation of their
biological functions and mechanisms are critical for the
development of efficient therapeutic approaches. Chal-
lenges in circRNA therapy include improving vectors,
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cyclization techniques, delivery methods, chemical syn-
thesis, and control methods. Advanced technologies such
as CRISPR-Cas-based editing and single-cell RNA-Seq
will further our understanding of circRNAs and their
clinical utility. Despite these gaps in understanding, cir-
cRNAs are a promising tool for clinical diagnosis and
treatment. This article reviews the biosynthesis, regula-
tion, identification techniques, and role of circRNAs in
renal cancer, including their effects on drug resistance,
metabolism, apoptosis, tumor growth, and metastasis.
Recent advancements have identified critical circRNAs
in urologic malignancies, making circRNA-based tumor
diagnosis and treatment attractive.
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