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Abstract 

Background Gallbladder cancer (GBC) is a prevalent and deadly biliary tract carcinoma, often diagnosed 
at advanced stages with limited treatment options. The 5‑year survival rate varies widely from 4 to 60%, mainly due 
to differences in disease stage detection. With only a small fraction of patients having resectable tumors and a high 
incidence of metastasis, advanced GBC stages are characterized by significant chemoresistance. Identification 
of new therapeutic targets is crucial, and recent studies have shown that the Endothelin‑1 (ET‑1) signaling pathway, 
involving  ETAR and/or  ETBR receptors (ETRs), plays a crucial role in promoting tumor aggressiveness in various cancer 
models. Blocking one or both receptors has been reported to reduce invasiveness and chemoresistance in cancers 
like ovarian, prostate, and colon. Furthermore, transcriptomic studies have associated ET‑1 levels with late stages 
of GBC; however, it remains unclear whether its signaling or its inhibition has implications for its aggressiveness. 
Although the role of ET‑1 signaling in gallbladder physiology is minimally understood, its significance in other tumor 
models leads us to hypothesize its involvement in GBC malignancy.

Results In this study, we investigated the expression of ET‑1 pathway proteins in three GBC cell lines and a primary 
GBC culture. Our findings demonstrated that both  ETAR and  ETBR receptors are expressed in GBC cells and tumor 
samples. Moreover, we successfully down‑regulated ET‑1 signaling using a non‑selective ETR antagonist, Macitentan, 
which resulted in reduced migratory and invasive capacities of GBC cells. Additionally, Macitentan treatment 
chemosensitized the cells to Gemcitabine, a commonly used therapy for GBC.

Conclusion For the first time, we reveal the role of the ET‑1 pathway in GBC cells, providing insight into the potential 
therapeutic targeting of its receptors to mitigate invasion and chemoresistance in this cancer with limited 
treatment options. These findings pave the way for further exploration of Macitentan or other ETR antagonists 
as potential therapeutic strategies for GBC management. In summary, our study represents a groundbreaking 
contribution to the field by providing the first evidence of the ET 1 pathway’s pivotal role in modulating the behavior 
and aggressiveness of GBC cells, shedding new light on potential therapeutic targets.
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Background
Gallbladder cancer (GBC) stands out as the most 
common and lethal form of biliary tract carcinoma [1]. 
Its 5-year survival rate varies widely, ranging from 4 to 
60%. This significant range is primarily contingent on the 
stage at which the disease is detected, and unfortunately, 
in advanced stages, when patients typically receive a 
diagnosis, the 5-year life expectancy drops to less than 
5% [1–3]. Incidence rates of GBC vary widely, with 
the highest cases reported annually in certain Eastern 
European countries, Asia, and Latin America [3]. The 
development of GBC is influenced by several risk factors, 
including gender, genetic-related geographic factors, 
chronic inflammation (cholecystitis), and gallstones 
(cholelithiasis) [4]. The elevated incidence rates in 
certain regions may be attributed to the high prevalence 
of cholelithiasis, especially in women, and the presence 
of genetic variants associated with the Mapuche ethnic 
group in South America, but the association between 
these risk factors has not been fully described and is still 
a subject of investigation [5]. However, it is thought that 
the common factor is related to chronic inflammation, 
though the exact origin and development of the 
pathology are not entirely clear.

The prognosis for GBC patients is grim, with an average 
survival time of 4 to 14  months, and the most effective 
treatment option being surgical resection [6]. However, 
less than 10% of patients have resectable tumors at 
the time of diagnosis, and nearly 50% already exhibit 
metastasis, frequently to the liver [7]. Even with surgical 
intervention, most patients progress to a metastatic stage 
[8], where the cancer cells exhibit significant resistance to 
conventional chemotherapy, with gemcitabine being the 
gold standard [9, 10]. Additionally, poorly differentiated 
GBC tissues, indicative of an invasive phenotype, are 
strongly associated with an increased risk of metastasis 
and poor patient outcomes [11, 12]. In GBC, the lack of 
effective treatment options and the challenges associated 
with late-stage diagnosis highlight the urgent need for 
novel therapeutic approaches. GBC’s grim prognosis 
underscores the critical requirement for innovative 
treatments to improve patient outcomes.

The malignant progression of GBC, characterized by 
dedifferentiation traits, is regulated by several signaling 
pathways that promote epithelial to mesenchymal 
transition (EMT), cell migration, invasiveness, and 
metastasis [13, 14]. These pathways include β-catenin, 
Hedgehog, TGF-β, PI3K/AKT, mTOR, among others 
plausible molecular targets [15–19]. Within the 
microenvironment of solid tumors, such as GBC, various 
autocrine and paracrine signaling molecules enhance 
tumor malignancy, among them Tumor Necrosis Factor-
alpha (TNFα), Vascular Endothelial Growth Factor 

(VEGF), and Endothelin-1 (ET-1) [20–22]. While ET-1 
is a well-known peptide involved in vasoconstriction and 
gallbladder physiology [23, 24], it has also been linked to 
cell survival, proliferation, angiogenesis, invasion, and 
metastasis in several cancers [22–28].

ET-1 signaling is mediated by two G protein-coupled 
receptors,  ETAR and  ETBR, which activate downstream 
pathways such as PLCβ, leading to calcium mobilization, 
PKC activation, and nuclear import of β-catenin and 
NF-κB [29–32]. ET-1 signaling target genes related to 
cancer progression include CCND1 (Cyclin-D1), AXIN2, 
PTGS2 (COX2), VEGF, ZEB1, and EDN1 (ET-1) itself 
[31, 33]. Elevated levels of ET-1 have been observed in 
certain cancers with invasive phenotypes, correlating 
with reduced survival and indicating its potential as a 
prognostic marker [34–36]. Genomic and transcriptome 
studies have revealed the expression of ET-1 and ETRs 
in biliary tract carcinomas, including GBC, with their 
levels correlating with advanced tumor stages [37, 38]. 
Macitentan, a non-selective dual  ETAR/ETBR antagonist, 
FDA-approved for pulmonary hypertension, has shown 
promise in preclinical studies for various cancers 
[39–43]. While ET-1’s role in various cancers has been 
extensively studied, its potential significance in GBC is a 
subject of growing interest. ET-1 has been demonstrated 
to play a crucial role in cancer progression in several 
malignancies, including prostate [44], colon [45], ovarian 
[31], lung [31], pancreatic [46], and others. Studies have 
shown that ET-1 can promote invasion and metastasis in 
these cancer types, suggesting that it may exert similar 
effects in GBC.

Considering the limited treatment options and poor 
prognosis associated with GBC [47], the role of ET-1 
signaling emerges as a promising avenue for further 
investigation. Its significance as a prognostic marker 
and therapeutic target in other cancer types adds to its 
potential importance [48]. Thus, the main objective of 
this study is to explore the presence and functional role 
of the ET-1 signaling pathway in GBC in vitro. Through 
our investigation, we aim to provide valuable insights 
that may contribute to the development of improved 
treatment strategies for this challenging malignancy.

Materials and methods
Tumor samples and immunohistochemistry
A retrospective analysis was conducted on 
cholecystectomy specimens diagnosed with GBC, 
along with corresponding clinical data from patients at 
the Pathological Anatomy Subdepartment of Hospital 
Base Valdivia, Chile, spanning 2001 to 2018. The study, 
encompassing 180 cases, exclusively focused on primary 
invasive gallbladder adenocarcinoma, excluding in  situ 
adenocarcinoma, squamous carcinoma, neuroendocrine 
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carcinoma, and metastases. Ethical approval was 
obtained from the Valdivia Bioethical Committee for 
Human Research. Tissue Microarrays (TMAs), previously 
constructed by our laboratory [12], were utilized. 
These TMAs, containing positive tissue controls, were 
subjected to immunohistochemical analysis using an 
automatic BenchMark GX Ventana system (Roche, AZ, 
USA). Primary antibodies were purchased from Abcam, 
 ETAR (ab219358, 1:200) and  ETBR (ab230618 1:2000). 
The ultraView Universal DAB Detection kit (Roche, 
Arizona, USA) was employed as per the manufacturer’s 
instructions. Two independent pathologists evaluated 
immunohistochemistry slides blindly under light 
microscopy, categorizing antigen expression based on 
positive and tissue controls within each slide. Antigen 
expression intensity was graded subjectively, considering 
positive tissue controls, and categorized as negative 
expression. Kaplan–Meier curves were constructed 
based on the presence or absence of positive staining.

Cell culture and treatments
Three GBC cell lines (NOZ, TGBC-1TKB, TGBC-
2TKB) and one primary culture (CAVE1) were used in 
this study. NOZ line is derived from ascites metastasis 
[49]. 1TKB line was derived from a lymph node of a 
gallbladder adenocarcinoma, and 2TKB was derived 
from a primary lesion of the same patient as 1TKB [50]. 
CAVE1 was obtained from a primary GBC tumor from 
a Chilean patient [51]. Once arrived at laboratory, all 
cells were immediately expanded in DMEM-HG medium 
supplemented with 10% FBS, 100 U/ml penicillin and 
100  μg/ml streptomycin (Gibco) at 37  °C and 5%  CO2, 
followed by storage in liquid nitrogen at − 190 °C. Once 
a year, one nitrogen aliquot was thawed, expanded, and 
stored again at − 80  °C. For experiments, one − 80  °C 
aliquot was thawed and grown in standard conditions. 
All experiments were performed within 1 year and cells 
were eliminated after 15 passages, as requested by each 
local biosecurity committee. Mycoplasma contamination 
was tested monthly with the EZ-PCR Mycoplasma Test 
kit (Biological Industries, Beit Haemek, Israel), being 
the last test performed 6 months ago and yielding no 
contamination. Macitentan (MedChemExpress) was 
used at 1 µM and ET-1 (Sigma Aldrich) at 100 nM.

Enzyme‑linked immunosorbent assay (ELISA)
ET-1 secreted to culture medium was quantified using 
Endothelin-1 (ET-1) Human ELISA Kit (Thermofisher, 
EIAET1). A cell density of  104 cells/well were incubated 
for 48 h in serum free DMEM-HG. ET-1 levels (pg) were 
measured according to the manufacturer’s instructions 
and normalized to total protein content and cell number.

3D‑migration and invasion
Cells (5 ×  104 cells/chamber) were plated on the upper 
side of a polycarbonate Transwell chamber (6.5  mm, 
8.0 μm, Corning, Lowell, MA, USA) for migration assay 
or in a 300 µg/ml matrigel-coated Transwell chamber for 
invasion assay with 2  µg/ml fibronectin in the bottom 
side to promote cell attachment. In both cases, cells were 
seeded in serum-free DMEM-HG. As chemoattractant, 
the bottom chamber contained DMEM-HG 
supplemented with 10% FBS. Cells were incubated at 
37 °C for 4 h (migration) or 16 h (invasion). Cells in the 
top chamber were carefully removed with cotton swabs 
and cells that crossed through the chamber were fixed 
with 0.5% crystal violet solution in 10% Methanol for 
10  min at room temperature. Cells were counted using 
the 10× objective in 5 different fields of the underside of 
the insert. The mean number of cells was normalized to 1 
using the control condition and then plotted.

RT‑qPCR
Total RNA was extracted with TRIzol (Gibco) and 
quantified by NanoDrop. Reverse transcription 
was performed with 1  µg RNA plus M-MLV RT 
(Promega) following manufacturer instructions. qPCR 
was performed in a Stratagene MX30005P (Agilent 
Technologies Inc), using the ΔΔCt method and ACTB 
(β-actin) as a normalizer gene. For the reaction, 
buffer 2 × Master mix qPCR Brilliant II Sybr® Green 
(ThermoFisher, Waltham, MA, USA) was used, following 
the manufacturer’s instructions. Primers sequences are 
listed in Additional file 1: Table S1.

Western blot
Proteins (30–40  μg) were separated by SDS-PAGE 
(BioRad, Hercules, CA, USA), transferred to a 0.22  μm 
nitrocellulose membrane and then blocked with 5% non-
fat milk in PBS-Tween 0.05%. Membranes were incubated 
at 4  °C overnight with primary antibodies followed by 
incubation for 1  h with a secondary HRP-conjugated 
anti-IgG antibody (Jackson Laboratories, 1:50,000 in 1X 
PBS-Tween 0.05%). Primary antibodies were Snail (CST 
#3879, 1:1000), E-cadherin (CST #3195, 1:1000), β-actin 
(Santa Cruz Biotechnology #47778, 1:5000), MMP9 
(CST #13667, 1:1000), ZEB1 (CST #3396, 1:1000), Lamin 
B1 (CST #12586, 1:1000), β-catenin (BD Biosciences 
#610153, 1:1000), NF-kB (CST #6956, 1:1000), ETAR 
(Thermo Scientific™ #PA3-065, 1:1000), ETBR (Thermo 
Scientific™ #PA3-066, 1:1000). Bands were revealed using 
the West Dura chemiluminescence system (Thermo-
Fisher) and imaging was performed on a Syngene G:Box 
instrument (Synoptics, Cambridge, UK).
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Reporter assay
NOZ cells were transfected with 10  µg of total DNA of 
pTOP-FLASH or pFOP-FLASH. Cells were lysed 24  h 
post-transfection with pasive lysis buffer. Luciferase 
activity was measured with luciferin substrate (Promega), 
following instructions provided by the manufacturer. The 
values reported for luciferase activity for each condition 
were used for calculating the TOP-FLASH/FOP-FLASH 
activity ratios. Values shown were averaged from at least 
three independent experiments.

Protein stability
NOZ cells  (106) were cultured in standard conditions 
and incubated with 20  µg/ml cycloheximide (CHX) in 
the absence or presence of 1  µM MAC and/or 100  nM 
ET-1. Cells were harvested after 0, 0.5, 1, 2 and 4  h of 
treatment. Cell extracts were analyzed by Western blot, 
using an anti-β-catenin antibody.

Indirect immunofluorescence (IFI)
Cells (2.5 ×  104) were grown on glass coverslips and 
treated with 1  µM MAC and/or 100  nM ET1 for 24  h. 
Samples were and fixed with PBS/4% paraformaldehyde 
and incubated with anti-β-catenin specific antibody (BD 
#610153) and DAPI for nuclear staining. Alexa fluor 
594 anti-mouse (Thermofisher) was used as a secondary 
antibody. Coverslips were mounted onto slides with 
DAKO and fluorescence was visualized with  a  Zeiss 
AxioObserver microscope.

Cell viability
CellTiter 96AQueous One Solution Cell Proliferation 
Assay (MTS) from Promega (Madison, WI, USA) was 
performed following manufacturer instructions. Briefly, 
2.5 ×  104 cells were seeded in 96-well plates for 24  h 
and treated with Gemcitabine (0–100  μM) alone or in 
combination with 1 μM Macitentan (MAC) for 72 h. Cells 
were incubated with MTS reagent for 2 h and absorbance 
was measured at 490  nm using a microplate reader 
(Synergy HT, BioTek Instruments, Inc.). Alternatively, 
for crystal violet viability assays, 5 ×  103 cells (NOZ 
and 2TKB) were seeded and treated with MAC/GEM 
for 72  h in the presence or absence of 1  mM pyruvate. 
Viability was indirectly measured by violet crystal stain 
and quantified by absorbance at 570  nm and plotted as 
percentage.

Statistical analysis
Statistical analysis and graphical representations were 
conducted using GraphPad Prism 8.1 software. Values 
were presented as mean ± SD from a minimum of 
three independent experiments. Statistical analysis 
was performed on normalized data using the unpaired 

t-Student test for unpaired data and one-way ANOVA for 
data groups. Kaplan–Meier and log-rank tests (Mantel-
Cox) were employed to construct and assess survival 
data. P ≤ 0.05 was considered statistically significant."

Results
ET‑1 axis characterization in gallbladder cancer cells
The function of ET-1 in gallbladder physiology has 
been already partially described, however, the aberrant 
secretion is related to gallbladder inflammation, as well 
as its transcript is increased in GBC samples, but its role 
in GBC progression is unknown [37, 38].

We analyzed the association between ET-1 receptors 
expression and median overall survival of GBC patients 
using TMAs. We found a significant relationship 
between  ETAR positive samples with less survival, 
suggesting this receptor as a possible marker of poor 
prognosis. No relationship between  ETBR positive 
samples with overal survival were founded (Fig.  1a). 
In order to characterize the ET-1 signaling pathway in 
our cells line,  ETAR and  ETBR levels were measured by 
RT-qPCR (Fig.  1b) and western blot (Fig.  1c) in 4 GBC 
cells, showing that both receptors are expressed in all 
cells lines. Notably,  ETBR is less expressed in 1TKB 
cells of a lymph node metastatic origin, suggesting a 
predominant role of  ETAR in GBC progression. However, 
both receptor’s levels are well detectable in the other 
cell lines, including primary cultures (CAVE1). ET-1 
processing enzymes levels were also detected in four 
cell lines highlighting that the enzyme which degrades 
ET-1 (NEP) is overexpressed in non-metastasic 2TKB 
cells, while the enzyme that activates ET-1 (ECE1) is 
diminished (Fig.  1c). ET-1 mRNA (EDN1) levels were 
detected in four cell lines, showing higher levels in NOZ 
and 1TKB cells, which share a metastasic origin (Fig. 1d). 
Finally, ET-1 levels were measured by ELISA in two cell 
lines showing that ET-1 levels are three-fold higher in 
NOZ cells in comparison with CAVE1 derived from a 
primary gallbladder adenocarcinoma, suggesting a role 
of ET-1 in GBC progression (Fig.  1e). These data show 
for the first time the expression of some ET-1 signaling 
members, suggesting a function related to the malignant 
progression of this cancer.

Macitentan downregulates ET‑1 signaling pathway 
in gallbladder cancer
To evaluate the sensitivity of GBC cells to ET-1/ETRs 
blockade, the cells were treated with the dual antagonist 
macitentan (MAC) and different features that account 
for ET-1 downregulation were evaluated. Transcript 
levels of ET-1 target genes were analyzed in two cell lines 
derived from the same patient but with different origins, 
1TKB (lymph node metastasis) and 2TKB (primary 
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tumor). Results showed that several target genes involved 
in GBC progression were downregulated by MAC, 
with the greatest effect on 1TKB cells which have a 
more aggressive origin (Fig.  2a). NF-kB and β-catenin 
protein levels were evaluated as markers of ET-1/ETRs 
activation. Protein levels of these proteins were induced 
by ET-1, and this was blocked by MAC (Fig.  2b). Also, 
nuclear β-catenin and NF-kB decreased under ETRs 
blockage in 1TKB and 2TKB cells, respectively (Fig.  2c, 
d). Interestingly, β-catenin levels were augmented in the 
cytosolic fraction of 2TKB cells (Fig. 2c). Since it is known 
that protein levels of β-catenin are mainly regulated its 
degradation, a Cycloheximide assay was performed to 
assess the stability of the protein. ET-1 was shown to 
increase the stability of β-catenin, which is prevented 
with MAC (Fig.  2e). ET-1 is capable of increasing the 
reporter activity of β-catenin, which is reversed when 
its receptors are blocked with MAC (Fig.  2f ). All these 
results suggest that the ET-1 pathway is active in GBC 
cells, but importantly it can be downregulated by the 
antagonist MAC.

ET‑1/ETRs blockade decreases migration and invasion
It has been described that ET-1 is a mitogenic peptide 
capable of promoting EMT, cell migration and invasion 

[29–33], however, it has not been studied in GBC. 
Therefore, we evaluated the effect of ET-1/ETRs 
blockade on the expression of EMT markers, as well as 
the migratory capacity of GBC cells. Results show that 
Slug, Snail and ZEB1 levels decreased in response to 
MAC, while E-cadherin increased, as expected (Fig.  3a, 
b). In order to evaluate the basal migratory capacity, cells 
were seeded in transwell chambers for 6 h, showing that 
both cells showed a similar capacity to cross the porous 
membrane (Fig.  3c). Notably, MAC treatment was able 
to decrease the migration in all lines tested, suggesting 
that ET-1 pathway regulates GBC cell migration, which 
is a critical step in metastatic progression. To exclude any 
potential effects of proliferation in migration capacity 
results, we evaluated the effect of MAC on proliferation, 
showing that even at longer times, blockade of ETRs does 
not affect viability, either in the presence or absence of 
pyruvate (Additional file  1: Fig. S1). Considering the 
observed effects of MAC on migration, we evaluated its 
effect on ET-1-mediated invasion. To evaluate the basal 
invasive capacity, cells were seeded in transwell/matrigel 
chambers for 16  h. The results showed that 1TKB and 
NOZ cells have a higher invasive capacity (Fig. 4a), which 
agree with its aggressive origin compared to 2TKB and 
CAVE1. Additionally, treatment with MAC decreased the 

Fig. 1 ET‑1 and its receptors are expressed in GBC cells. a Kaplan–Meier post‑diagnosis overall‑survival (OS) estimation of GBC patients, according 
to ET‑1 receptors expression. Each graph shows the number of patients in each group (n), the median OS time in months, and overall survival rate 
(%). p‑values were calculated using a log‑rank (Mantel–Cox) test. b ET‑1 receptors,  ETAR (EDNRA) and  ETBR (EDNRB), transcripts levels were measured 
by RT‑qPCR in four GBC cell lines. c ET‑1 receptors  ETAR and  ETBR, ECE1 and NEP protein levels were detected by western blot in four GBC cell lines. 
Representative images from three independent experiments are shown. d ET‑1 transcripts (EDN1) levels were measured by RT‑qPCR in four GBC 
cell lines. e ET‑1 extracellular levels (pg/ml) were measured by ELISA in CAVE‑1 and NOZ GBC cells. Data represent averages ± SEMs (n = 3). ANOVA 
and Student’s tests were used. *p < 0.05
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invasiveness of 1TKB and NOZ, but not 2TKB (Fig. 4a). 
Regarding CAVE1, there are no discernible variances in 
treatment, as the basal invasion is exceedingly minimal, 
to the point of being nearly imperceptible. This outcome 
aligns seamlessly with its inherently non-invasive nature. 
Despite these results, MMP9 transcripts levels were 
similarly decreased by MAC in two cell lines (Fig. 4b).

Macitentan sensitizes gallbladder cancer cells 
to gemcitabine
GBC cells are highly resistant to conventional therapies, 
such as gemcitabine (GEM) [9, 10]. Thus, we evaluated by 
MTS whether ETRs blockade with MAC could sensitize 
GBC primary cells (CAVE1) and a highly chemoresistant 
cell line (NOZ) to GEM. Importantly, MAC itself was 
not cytotoxic for at least 72 h (Additional file 1: Fig. S1). 
Our results showed that treatment with GEM induce 
both,  ETAR and  ETBR levels, suggesting a possible role of 
ET-1 signaling in GEM effectivity (Fig. 5a). Furthermore, 
treatment with MAC decreases  IC50 of GEM almost 

2.5-fold (Fig.  5b). Similar results were observed using 
the crystal violet viability assay. The application of GEM 
led to a reduction in cell viability, a effect that was even 
more pronounced when used in conjunction with MA 
(Fig.  5c). As expected, GEM prompted an increase in 
cl-PARP levels, a response that was enhanced with 
the administration of MAC. In order to observe how 
known markers of ET-1 activation behave, levels of 
ZEB1, β-catenin and NF-kB were measured, and a 
slight induction of both proteins was observed in the 
presence of GEM, which is reversed when blocking ET-1 
receptors with MAC (Fig.  5d). Altogether, our results 
suggest that MAC may be a plausible therapeutic option 
in a synergistic sensitization of GEM effect in GBC cells 
(Fig. 6).

Discussion
Our analysis revealed a significant and intriguing 
relationship between the expression of Endothelin-1 
Receptor A  (ETAR) and the median overall survival of 

Fig. 2 Dual ETRs antagonism with macitentan (MAC) promotes ET‑1 signaling downregulation in GBC cells. a Transcript levels of ET‑1 target genes 
were measured by RT‑qPCR in two GBC cell lines, 1TKB (blue) and 2TKB (red) treated with 1 µM MAC for 24 h. b Total β‑catenin and NF‑kB (p65) 
levels were measured by western blot in NOZ GBC cells treated with 100 nM ET‑1 and/or 1 µM MAC for 24 h. Representative images from three 
independent experiments are shown. c Cytosolic and nuclear β‑catenin and NF‑kB (p65) were measured by western blot in 1TKB and 2TKB GBC cells 
treated with 1 µM MAC for 24 h. Lamin B1 was used as a nuclear marker. d Indirect immunofluorescence of NOZ cells treated with 1 µM MAC and/
or 100 nM ET1 for 24 h. β‑catenin was visualized using a specific antibody and the nucleus was stained with DAPI. e Cycloheximide stability assay 
of β‑catenin in NOZ cells treated with 100 nM ET‑1 and/or 1 µM MAC between 0 and 4 h. f Reporter activity of β‑catenin was measured by luciferase 
reporter assay using the TOP/FOB Flash system. Values reported for luciferase activity were used to calculate the TOP/FOP ratios (mean ± SD). 
Representative images from three independent experiments are shown. Data represent averages ± SDs (n = 3). ANOVA and Student’s tests were 
used. *p < 0.05
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GBC patients. Specifically, GBC patients with samples 
that displayed positive  ETAR expression exhibited 
shorter survival durations. This finding strongly 
suggests that  ETAR expression may serve as a valuable 
prognostic marker, indicating a poorer prognosis for 
those individuals with GBC. This observation aligns 
with previous research that has implicated ET-1 and its 
receptors in the progression and prognosis of various 
cancers [45, 52]. Conversely, in our study, we did not 
observe a statistically significant relationship between 
the expression of Endothelin-1 Receptor B  (ETBR) and 
overall survival among GBC patients. This highlights, 
as in other types of cancer, that it is receptor A that 
would be more involved in the aggressiveness of cancers, 
without completely ruling out a possible role of receptor 

B [41]. This reaffirms the use of MAC to counteract the 
effect of both receptors or a compensatory effect when 
one of the two predominates.

Epithelial-to-mesenchymal transition (EMT) is a 
process which is characterized by loss of apical-basal 
polarity [53, 54] and cell–cell junctions [55, 56], synthesis 
and release of ECM-degrading metalloproteinases 
[57–59], increased migration and acquisition of invasive 
capacity [60–62], colonization of local and distant 
sites [63, 64], and enhanced chemoresistance [65–68]. 
Therefore, hindering and/or reverting EMT has been 
established as an approach to impair GBC invasion 
and metastasis, which would reduce the number of 
inoperable neoplasms. EMT is triggered in response 
to signals that cells receive from microenvironment, 

Fig. 3 Blockade of ET‑1 signaling decreases EMT‑marker expression and 3D‑cell migration. a Transcript levels of EMT markers were measured 
by RT‑qPCR in two GBC cell lines, 1TKB (blue) and 2TKB (red), treated with 1 µM MAC for 24 h. b Protein levels of EMT markers were measured 
by western blot in two GBC cell lines, 1TKB and 2TKB, treated with 1 µM MAC for 24 h. c 1TKB and 2TKB cells were seeded in a transwell chamber 
in FBS free medium with 10% FBS in the lower bottom as a chemoattractant. Cells were incubated at 37 °C for 4 h in presence or absence 
of 1 µM MAC. Cells were fixed and stained with crystal violet and counted using the 10× objective in 5 different fields. Control was normalized 
to 1 and finally plotted as fold changes. Scale bar: 100 nm. Data represent averages ± SDs (n = 3). ANOVA and Student’s tests were used. *p < 0.05 
**p < 0.01
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including Endothelin-1 (ET-1) [22, 34, 36]. In fact, it has 
been demonstrated that ET-1 promotes tumor migration 
[69], invasion [70], metastasis [71], stemness [72, 73], and 
chemoresistance [74].

Here, for the first time, it has been demonstrated the 
role of ET-1 in both downregulation of EMT-regulators, 
as well as migration and invasion of GBC cells. In fact, 
ET-1 extracellular levels were higher in metastatic 
cells (NOZ) in comparison to primary tumor cells 
(CAVE-1). Similar extracellular ET-1 levels have been 
observed in human tumor cell lines with epithelial-
like morphology [75, 76]. High Endothelin-Converting 
Enzyme-1 (ECE-1) levels and low Neprilisin (NEP) levels 
might explain the aberrant ET-1 levels in NOZ cells. 
Thus, pharmacological modulation of ET-1 axis might 
impair GBC progression. However, we did not observe a 
positive correlation between ETRs protein and transcript 
levels. This disparity in mRNA and protein levels may be 
attributed to post-translational modifications, including 
phosphorylation, ubiquitination, glycosylation, and 
palmitoylation. These modifications hold the capacity 
to regulate the spatiotemporal dynamics of ETRs, 
consequently impacting their signaling and the resulting 
gene regulatory network during tumorigenic processes. 

Furthermore, it is noteworthy that various post-
translational modifications can interact with each other, 
yielding both positive and negative effects.

ET-1 signals through its two G protein-coupled 
receptors (GPCRs):  ETAR [77] and  ETBR [78]. Many 
GPCR conformations lead to a variety of highly 
specialized downstream signaling cascades [79–83]. 
As a transducer downstream to  ETAR, β-arrestin-1 
translocates to the nucleus and interacts with β-catenin 
to promote target genes transcription (e.g., EDN1, 
AXIN2, MMP9 and CCND1) [84, 85]. Transcriptional 
activation of EDN1 by β-catenin has been also observed 
in colon [86], prostate [87], and ovarian cancer [31] and 
creates a self-amplifying positive-feedback loop that 
forms an ET-1 autocrine circuit [22].

Here we have hypothesized that dual ETRs blockade 
with macitentan (MAC) may modulate ET-1 signaling 
downstream pathways in GBC cells. Blocking ETRs 
would induce changes in transcript levels of ET-1 
signaling target genes, which would vary depending 
on the GBC cell line. In fact, in 1TKB cells, VEGF and 
BIRC5 transcripts were reduced in presence of MAC. 
Likewise, VEGF and CCND1 were downregulated in 
2TKB cells with the same treatment. Consequently, we 

Fig. 4 ET‑1 signaling blockage with macitentan decreases in vitro GBC cell invasion. a 1TKB (blue), 2TKB (red), NOZ (purple) and CAVE1 
(yellow) cells were seeded in a matrigel‑coated transwell chamber in FBS free medium, while the lower bottom contained medium + 10% FBS 
as chemoattractant. Cells were incubated at 37 °C for 16 h in presence or absence of 1 µM MAC. Cells were fixed and stained with crystal violet 
and counted using the 10× objective in 5 different fields. Control was normalized to 1 and then plotted as fold changes. Scale bar: 100 nm. Data 
represent averages ± SEMs (n = 3). ANOVA and Student’s tests were used. *p < 0.05 **p < 0.01. b MMP9 transcript levels were measured by RT‑qPCR 
in two GBC cell lines, 1TKB (blue) and 2TKB (red), treated with 1 µM MAC for 24 h. Data represent averages ± SDs (n = 3)
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evaluated whether MAC treatment in NOZ, 1TKB and 
2  KB cell lines modulated also β-catenin and NF-κB 
signaling. Total β-catenin and NF-κB protein levels were 
increased with ET-1 in NOZ cells and this was blocked 
upon MAC treatment, proving that MAC impairs ET-1-
induced β-catenin and NF-κB signaling in a GBC in vitro 
model. In 1TKB cells, dual ETRs blockade reduced 
β-catenin nuclear levels. On the contrary, β-catenin 
cytosolic levels were not altered. In 2TKB cells treated 
with MAC, β-catenin was accumulated in the cytoplasm, 
where it might be bound with E-cadherin, thus involved 
in maintaining an epithelial phenotype. Additionally, 
activation of NF-κB is induced by ET-1 in various cancer 
cell lines [88–92], which has been involved with cell 
migration [93]. Here we demonstrated that NF-κB protein 
levels did not change after treatment with MAC in 1TKB 
and 2TKB cells, suggesting that ETRs dual blockade 
may be related to impairing β-catenin co-transcriptional 
activity and promoting binding with E-cadherin in 1TKB 
and 2TKB cells, respectively. Future studies should aim 
to elucidate if blocking ET-1 signaling hinders NF-κB or 

β-arrestins recruitment in GBC, which initiates signaling 
cascades in colorectal [67] and ovarian cancer [31]. The 
results from the Cycloheximide assay demonstrate that 
ET-1 plays a pivotal role in enhancing the stability of 
β-catenin, potentially influencing downstream signaling 
pathways. This finding indicates that ET-1 may contribute 
to the accumulation and maintenance of active β-catenin 
within cells. Significantly, the stabilizing effect of ET-1 on 
β-catenin is effectively countered when its receptors are 
blocked with MAC. Furthermore, the ability of ET-1 to 
increase the reporter activity of β-catenin, reversed by 
MAC, underscores the potential therapeutic implications 
of modulating β-catenin’s activity in response to ET-1 and 
MAC, particularly in diseases associated with aberrant 
β-catenin signaling [13].

In order to assess whether MAC has a functional effect 
on cell migration and invasion, we tested the blockade 
of ETR on 3D-migration in cells of different aggressive 
origin. We found a correlation between the induction of 
E-cadherin at the protein level and the downregulation 
of ZEB1 and Snail, but no correlation was observed 

Fig. 5 ET‑1 signaling blockage with macitentan sensitizes GBC cells to gemcitabine. a ECE1,  ETAR and  ETBR protein levels were detected by western 
blot in NOZ cells treated with 14 µM GEM and/or 1 µM MAC for 24 h. b Cells were seeded in 96‑well plates for 24 h and treated with increased 
concentrations of gemcitabine (GEM) alone or in combination with 1 μM MAC for 72 h. Cells were incubated with MTS reagent for 2 h 
and absorbance was measured at 490 nm and plotted as percentage. c Cell viability of NOZ cells treated with 14 µM GEM and/or 1 µM MAC for 72 h 
measured by crystal violet assay. d ZEB1, β‑catenin, NF‑kB and cleaved PARP (cl‑PARP) detection by western blot in NOZ cells treated with 14 µM 
GEM and/or 1 µM MAC for 24 h. Data represent averages ± SDs (n = 3). ANOVA test was used. *p < 0.05
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between mRNA and protein levels of some EMT-
markers, suggesting a regulation at the level of protein 
stability and regulation of its degradation. No mRNA and 
protein levels of Twist (data not shown) were detected. 
As expected, cell invasion was considerably higher in 
1TKB cells of metastatic origin compared to 2TKB cells 
originating from a primary tumor. In this sense, MAC 
decreases 1TKB invasion but has no effect on 2TKB. 
This suggests that blockade of ETRs affects the invasion 
of a cell highly invasive but with no effect on either non-
invasive or minimally invasive cells.

Finally, we demonstrate that the widely used drug 
gemcitabine (GEM) reduces the viability of GBC cancer 
cells which is potentiated by blocking ETRs with MAC, 
indicating that MAC would be chemosensitizing 
these cells. Our results are similar to those found in 
pancreatic cancer [74], where it was shown that  ETAR 
blockade sensitizes cells to GEM, however, in our model 
we have yet to understand the effect of each receptor 
separately. As observed in our study, the administration 

of GEM led to the expected increase in cleaved PARP 
(cl-PARP) levels, suggesting activation of apoptosis [74]. 
Interestingly, this response was further enhanced with 
the co-administration suggesting that ETRs blockage 
may potentiate the cytotoxic effects of GEM, possibly 
by intensifying the apoptotic response, which is in line 
with our expectations and adds a promising dimension 
to the use of these agents in combination therapy. 
Remarkably, the induction of β-catenin and NF-kB 
with GEM was reversed with MAC. This finding raises 
intriguing questions about the interaction between GEM 
and the ET-1 pathway. The reversal of protein induction 
by MAC suggest that the ET-1 pathway is involved in 
the observed responses to GEM. It’s possible that ET-1 
signaling is activated in response to GEM, leading to 
the induction of β-catenin and NF-kB. Subsequently, 
blocking ET-1 receptors with MAC could mitigate this 
activation, suggesting a potential mechanism for the 
chemosensitization effect we observed earlier.

Our study’s findings are in line with existing research 
on the role of ET-1 in cancer, indicating both similarities 
and differences. Similarities the aberrant activation of 
ET-1 signaling in cancer development, such as tumor 
initiation, metastatic colonization and chemoresistance 
in several neoplasms [35]. Other similarity is the 
correlation between ETRs expression and pathological 
outcomes, such as patient survival and metastasis in 
various cancer models [36, 45]. However, the distinct 
tumor microenvironment, unique signaling networks, 
clinical presentation, and genetic variations in GBC 
may contribute to differences in ET-1’s impact within 
this specific cancer. These differences are probably 
shaped by the distinct biology of GBC and could offer 
valuable insights for customized therapeutic strategies. 
Despite being relatively underexplored, similarities have 
been noted with gastrointestinal cancers, suggesting 
the potential for applying similar approaches to these 
tumor types [15]. Further research is needed to unveil 
the specific mechanisms behind these differences and to 
develop targeted treatments for GBC. The high mortality 
rate of GBC is largely due to silent and rapid progression 
as well as its marked aggressiveness and resistance to 
treatment [94, 95]. Altogether, we demonstrated that 
blocking ET-1 signaling hampers migration, invasion and 
chemoresistance in GBC cells, suggesting ETRs as novel 
therapeutic targets in GBC possible prognostic marker, 
which should be further confirmed in patient samples.

Conclusions
The ET-1 signaling pathway is functionally active in 
gallbladder cancer (GBC) cells, and its extracellular 
levels positively correlate with increased malignancy. 
The pharmacological blockade of ET receptors (ETRs) 

Fig. 6 Potential use of blocking ET‑1 signaling with macitentan 
in gallbladder cancer therapy. ETRs blockage with macitentan 
regulates ET‑1 target genes expression and nuclear protein levels 
of β‑catenin. ET‑1 signaling blockage downregulates EMT markers 
(Snail and ZEB1), impairing cell invasion
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using macitentan results in distinct regulation of nuclear 
protein levels of NF-κB and/or β-catenin, leading to 
altered expression of target genes. Furthermore, the 
inhibition of ET-1 signaling leads to the downregulation 
of epithelial-to-mesenchymal transition (EMT) markers, 
resulting in a reduction of cell migration and invasion 
capabilities. Importantly, ET-1 signaling blockade 
also enhances the chemosensitivity of GBC cells to 
gemcitabine. These findings collectively suggest that 
targeting the ET-1 axis represents a promising and novel 
therapeutic strategy for GBC treatment.
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