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Abstract
Background Histone chaperones (HCs) are crucial for governing genome stability and gene expression in multiple 
cancers. However, the functioning of HCs in the tumor microenvironment (TME) is still not clearly understood.

Methods Self-tested single-cell RNA-seq data derived from 6 breast cancer (BC) patients with brain and liver 
metastases were reanalyzed by nonnegative matrix factorization (NMF) algorithm for 36 HCs. TME subclusters were 
observed with BC and immunotherapy public cohorts to assess their prognosis and immune response. The biological 
effect of HSPA8, one of the HCs, was verified by transwell assay and wound-healing assays.

Results Cells including fibroblasts, macrophages, B cells, and T cells, were classified into various subclusters based 
on marker genes. Additionally, it showed that HCs might be strongly associated with biological and clinical features 
of BC metastases, along with the pseudotime trajectory of each TME cell type. Besides, the results of bulk-seq analysis 
revealed that TME cell subclusters mediated by HCs distinguished significant prognostic value for BC patients and 
were relevant to patients’ immunotherapy responses, especially for B cells and macrophages. In particular, CellChat 
analysis exhibited that HCs-related TME cell subclusters revealed extensive and diverse interactions with malignant 
cells. Finally, transwell and wound-healing assays exhibited that HSPA8 deficiency inhibited BC cell migration and 
invasion.

Conclusions Collectively, our study first dissected HCs-guided intercellular communication of TME that contribute to 
BC metastases.
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Introduction
Breast cancer (BC) is widely regarded as the predomi-
nant form of cancer among females [1]. Globally, the 
annual occurrence of BC is a staggering 1.7 million cases, 
demanding urgent attention. The diagnosis, prognosis, 
and treatment of BC have significantly advanced to date 
with the introduction of contemporary methods. Early 
detection leads to the successful treatment of BC, but 
occasionally the illness reoccurs in secondary locations 
through a process known as “metastasis”, posing a grave 
danger to the prognosis of patients. Therefore, gaining a 
more profound comprehension of the molecular mecha-
nisms underlying BC metastasis could potentially lead to 
the development of innovative approaches for BC pre-
vention and treatment.

Histone chaperones (HCs) are the cornerstone of his-
tone fate. It protects chromosome templates and regu-
lates the storage, transportation, post-translational 
modification and nucleosome assembly of histones [2]. 
HCs affect all processes of chromosomes, playing a cru-
cial role in gene expression, gene replication, gene repair, 
and gene stability. Importantly, histone dysfunction is 
associated with many diseases, including tumors [3]. Spe-
cifically, the close association between histone chaperone 
and BC metastasis is well-documented [4]. For instance, 
in the progression of luminal A subtype BC, the high 
expression of HJURP, a histone chaperone, indicates a 
higher likelihood of metastasis [5]. There is evidence to 
suggest that DAXX, one of the HCs, has a tumor inhibi-
tory effect [6].

Currently, increasing evidences have demonstrated 
the crucial function of the tumor microenvironment 
(TME) in the tumor advancement and spread. Further-
more, single-cell RNA sequence (scRNA-seq) uncov-
ered the complex intercellular communication between 
diverse subtypes of TME cells and tumor cells [7, 8]. In 
addition to the tumor cells, the TME consists of various 
cell types such as cancer-associated fibroblasts (CAFs), 
tumor-associated macrophages (TAMs), T cells, and B 
cells. Notably, recent research conducted by Yin, et al. has 
demonstrated that the elimination of Mettl3 in myeloid 
cells promotes tumor growth and metastasis in vivo [9]. 
Evidences suggest a strong association between histone 
acetylation patterns and tumor malignant pathways and 
TME. For instance, it has been observed that high levels 
of histone acetylation coincide with increased presence 
of immunosuppressive cells like regulatory T cells (Tregs) 
and myeloid-derived suppressor cells [10]. Nevertheless, 
limited studies have been conducted to explore the inter-
action between HCs associated subtypes of TME cells 
and tumor cells.

In this study, we examined the impact of HCs on vari-
ous TME cells, including malignant cells, endothelial 
cells, mural cells, CAFs, myeloid cells, B cells, and T cells, 
based on 40,036 scRNA-seq data derived from 6 samples 
from BC patients with brain and liver metastases. By 
nonnegative matrix factorization (NMF) clusters of 36 
HCs, it was observed that different patterns of HCs in 
each BC TME cell type subpopulation manifested exten-
sive and diverse communication with tumor epithelial 
cells and were associated with different immune charac-
teristics, metabolic pathways, transcription characteris-
tics and prognosis. Based on our current understanding, 
this study uncovers a novel finding that HCs could poten-
tially facilitate intercellular communication between 
TME cells and tumor cells, thereby playing a role in the 
BC progression.

Materials and methods
Data collection
The flowchart was shown in Fig. 1A. The research gath-
ered scRNA sequencing data from six BC patients, 
consisting of three individuals with brain metastasis 
(BM) and three with liver metastasis (LM). The detailed 
clinical information of these patients was presented in 
Supplementary Table S1. All samples analyzed in this 
investigation originated from patients with a confirmed 
pathological diagnosis of metastatic breast cancer. None 
of the patients had undergone chemotherapy or radia-
tion treatment for their metastasis before surgery, except 
for patient P01, who achieved a pathologic complete 
response following anti-HER2 therapy and chemother-
apy. Following initial sample integration, a gene expres-
sion and phenotype matrix was generated, encompassing 
40,036 scRNA-seq datasets [11]. 36 HCs were collected 
from a previous study and shown in Supplementary 
TableS3 [12]. BC bulk transcriptome and clinical infor-
mation were collected from the published articles and 
database (TCGA-BRCA, METABRIC, GSE58812 [13], 
GSE173661, GSE42568 [14], and GSE103091 [15]). 
Immune checkpoint blockade immunotherapeutic 
(ICB) cohorts were collected from the published arti-
cles and database (PMID32895571 [16], PMID29301960 
[17], GSE91061 [18], GSE35640 [19], GSE145996 [20], 
GSE126044 [21], GSE115821 [22], and GSE111636). We 
also collected BC RNA-seq and microarray datasets from 
bc-GenExMiner database, and multiple scRNA-seq data-
sets from TISCH database.

BC visualization of TME cell types and subtypes
The “Seurat” R package was employed to create Seurat 
objects for both the total and specific cell types within 
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the scRNA-seq gene expression matrix [23]. Subse-
quently, the 3000 highest-ranking genes, identified as 
the most variable features, were employed to normalize 

for each individual cell by utilizing the “FindVari-
ableFeatures” function. Additionally, we executed the 
“ScaleData” and “RunPCA” functions to determine the 

Fig. 1 Overview of HCs in the scRNA-seq data for BC. (A) The overall design of the present study. (B) t-SNE plot of single cells profiled in our previous 
study colored by major cell type. (C) t‐SNE plot of single cells profiled in our previous study colored by metastasis location. (D) The composition of each 
cell type from brain metastasis and liver metastasis patients. (E) Heatmap distribution of top marker genes in each cell type. (F) Bubble plot of the average 
and percent expression of top marker genes in each cell type. (G) Cell–Cell communications among cell types by Cellchat analysis. (H) Heatmap of the 
expression of HCs in each cell type
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principal components count. We employed the t-distrib-
uted stochastic neighbor embedding (tSNE) algorithm 
for dimensionality reduction. Subsequently, leveraging 
the annotated information from our previous study, we 
utilized the “Idents” and “DimPlot” functions to annotate 
and visualize the cells belonging to the predominant cell 
types or subtypes within the TME.

Pseudotime trajectory analysis of histone chaperones for 
TME cells
In order to examine the correlation between cell pseu-
dotime trajectories and HCs, the “Monocle2” R package 
was utilized [24]. Dimensionality reduction was achieved 
using the DDR-Tree approach. Afterwards, the “plot_
pseudotime_heatmap” function was utilized to create 
heatmaps that display the changing expression of HCs in 
the pseudotime trajectories of different TME cell catego-
ries in BC.

NMF of HCs in TME cells
We employed the “NMF” R package and conducted a 
dimension reduction analysis on 36 HCs across all TME 
cell types. These procedures were carried out in a man-
ner consistent with previous studies [7, 25].

Identification of the marker genes of HCs-mediated cell 
subtypes in TME cells
The “FindAllMarkers” function was employed to enumer-
ate the markers of each NMF cluster pertaining to every 
cell type in BC. Additionally, the “AddModuleScore” 
function computed the signature scores by consider-
ing differentially expressed genes (DEGs) across these 
NMF cell clusters. The distribution of specific signatures 
of NMF cluster scores in the TME of BC was visualized 
using the “FeaturePlot” function. The gene sets utilized 
for comparing the clusters mediated by HCs were col-
lected from MSigDB database and a previous study [26].

Functional Enrichment Analysis for NMF HCs-mediated 
subtypes
The “clusterProfiler” R package was employed to iden-
tify potential biological processes using marker genes 
from various TME cell types within NMF clusters [27]. 
In addition, we utilized the “scMetabolism” R package to 
analyze metabolic pathway activity encompassing all cell 
types in BC [28].

SCENIC analysis for NMF HCs-mediated subtypes
The investigation of the gene regulatory network of tran-
scription factors (TFs) in BC utilized the “SCENIC” R 
package [29]. Two gene-motif rankings, specifically hg19-
tss-centered-10  kb and hg19-500  bp-upstream, sourced 
from the RcisTarget database, were employed to identify 

the transcription start site and establish the gene regula-
tory networks in the scRNA-seq data of BC.

Cell-cell communication analysis for NMF HCs-mediated 
subtypes
We employed CellChat with the CellChatDB.human 
database to assess the primary signaling inputs and out-
puts within all NMF TME cell clusters [30]. Subsequently, 
we utilized the “netVisual_circle” function to visually rep-
resent the strength or weakness of cell-cell communica-
tion networks between the target cell cluster and other 
cell clusters within the entire set of NMF clusters.

Survival analyses
Kaplan–Meier (K-M) analyses and Cox regression were 
performed by “survival” and “survminer” R packages. The 
cutoff values were calculated by “surv_cutpoint” func-
tion. The hazard ratios (HR), the odd ratios (OR) and 95% 
confidence intervals (CI) were also calculated.

Cancer immunity cycles and immunoregulation-related 
pathways
Cancer immunity cycle was derived from previous 
research [31] and the activities of each step were also 
estimated [32].

Cell lines and culture conditions
We used the human epithelial BC cell lines, including 
MDA-MB-231 and BT549, from the American Type 
Culture Collection. All cell lines were cultured and 
maintained according to established protocols, at a tem-
perature of 37 °C and a relative humidity of 99%, without 
the use of antibiotics. Small interfering RNAs (siRNAs) 
oligos against HSPA8 were transfected with Lipo-
fectamine 3000 (Invitrogen), and the sequences of the 
siRNAs used in this study are listed in Supplementary 
TableS4.

Western blot analysis
Cell protein extracts were obtained by utilizing RIPA 
lysis buffer. Total protein was added to SDS-PAGE and 
transferred to PVDF membrane from Millipore. Anti-
body against HSPA8 and β-actin was used. Membrane 
was incubated with primary antibody at 4  °C overnight, 
followed by the secondary antibody at room temperature 
for 1 h. The blots were further visualized with Immobilon 
Western Chemiluminescent HRP Substrate (Beyotime).

Transwell assays
A total of 50,000 cells were subjected to digestion and 
subsequently resuspended. Cells from each experimental 
group were introduced into the upper chambers, which 
were devoid of fetal bovine serum (FBS), while the lower 
cross-pore compartment contained a solution with 20% 
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FBS. Following a 22-hour period, we conducted imaging 
and quantification of all migrated TNBC cells subsequent 
to their fixation with methanol and staining with crystal 
violet (0.1%).

Cell wound healing assays
The TNBC cells underwent transfection were cultured 
in 6-well plates at a density of 1 × 106 cells per well for a 
duration of 24 h. Next, the wounds were generated utiliz-
ing a 100 µL pipette tip. The images were captured using 
a microscope at both 0 and 24  h. We employed image 
J software to measure the scratch area and assess cell 
migratory capacity.

Statistical analysis
The standard statistical tests employed in this study were 
the Student’s t-test, Wilcoxon rank-sum test, Kruskal–
Wallis test, and Chi-square test. These tests were used 
to assess the differences in continuous target or category 
variables within the various cell subgroups. Pearson anal-
ysis was conducted to examine the correlation between 
different cell signatures or gene expressions among 
TME BC cell types. p < 0.05 was considered statistically 
significant.

Results
The landscape of HCs in TME cells in BC
We examined the landscape of HCs using the BC scRNA-
seq dataset described previously (Fig. 1A) [11]. We iden-
tified 40,036 TME cells in 6 samples from BC patients 
with brain and liver metastases. These cells were catego-
rized into 7 different types, including malignant cells, 
endothelial cells, mural cells, CAFs, myeloid cells, B cells, 
and T cells (Fig.  1B). We also used tSNE to reduce the 
dimensions and explore the distribution between differ-
ent metastasis location groups (Fig. 1C). The cell propor-
tions in each patient were also assessed and shown in 
Fig. 1D and Supplementary Table S2. Besides, the anno-
tated cell types were confirmed through the expression 
of canonical markers and the findings were presented 
using a heatmap (Fig. 1E), and a bubble plot provided a 
scaled expression level and proportion of specific mark-
ers expressed by each cell type (Fig.  1F). By cell-chat 
analysis, we also found that these cell types interacted 
in diverse and distinct manners (Fig.  1G). Moreover, it 
was clear that HCs were indeed expressed differently in 
BC metastases according to the scRNA-seq dataset. For 
example, ASF1A, ASF1B, CHAF1A, CHAF1B, HIRA, 
HJURP, IPO4, MCM2, NPM2, NPM3, and TONSL 
exhibited low expression levels in almost all cell types. 
In contrast, HSP90AA1, HSP90AB1, HSPA8, NAP1L1, 
NCL, and NPM1 are highly expressed in all cell types 
(Fig.  1H). Besides, we compared the expression level 
of HCs between BM and LM and observed that, in BM 

group, most HCs expression levels are higher than LM 
in malignant and B cells, whereas are lower in other cell 
types (Supplementary Figure S1 and S2).

Novel HCs-mediated CAFs contributed to the TME of BC
We first extracted the CAFs subgroup from the scRNA-
seq dataset. Based on the pseudotime analysis, we found 
that the HCs were crucial to CAFs trajectory process 
(Fig. 2A). By NMF algorithm, we identified 4 HCs-medi-
ated CAFs subgroups which named as HSP90AB1 + 
CAF-C1, DEK + CAF-C2, NASP + CAF-C3, and Non-
eHistone_CAF-C4 (Supplementary FigureS3). We then 
used cell-chat analysis and found that each HCs-medi-
ated CAFs subgroup had different numbers of ligand-
receptor connections, that is, HSP90AB1 + CAF-C1 
and DEK + CAF-C2 subgroups had more connections 
whereas NASP + CAF-C3 and NoneHistone_CAF-C4 
possessed less connections (Fig.  2B). Among these sub-
groups, the HSP90AB1 + CAF-C1 and DEK + CAF-C2 
proportions had higher percentages in BC LM samples 
than that in BM samples while the NASP + CAF-C3 and 
NoneHistone_CAF-C4 proportions had lower percent-
ages in BC LM samples (Fig.  2C). Besides, the result 
of the KEGG enrichment analysis showed that the 
HSP90AB1 + CAF-C1 subgroup was related to numer-
ous classic biological processes such as apoptosis, cellular 
senescence, TCA cycle, DNA replication, HIF-1 signaling 
pathway, etc., and the DEK + CAF-C2 subgroup exhib-
ited activities in proteasome, ribosome, and TGF-beta 
signaling pathway. The NASP + CAF-C3 subgroup was 
found participated in cell adhesion molecules while the 
NoneHistone_CAF-C4 did not display a specific biologi-
cal process (Fig. 2D).

Moreover, we calculated pan-CAF signatures activi-
ties among these subgroups, and we found that the 
HSP90AB1 + CAF-C1 and DEK + CAF-C2 subgroups 
were obviously correlated with desmoplastic CAF (pan-
dCAF), inflammatory CAF (pan-iCAF), and proliferat-
ing CAF (pan-pCAF), whereas the NASP + CAF-C3 and 
NoneHistone_CAF-C4 subgroups were more closely to 
myofibroblast-like CAF (pan-myCAF) (Fig.  2E). Addi-
tionally, analysis of gene regulatory networks among 
HCs-mediated CAFs revealed significant differences in 
TFs. Notably, the HSP90AB1 + CAF-C1 subgroup was 
characterized by enhanced TF activities of FOS, FOSB, 
JUN, JUNB, STAT1, etc., and the DEK + CAF-C2 sub-
group exhibited upregulated TF activities of IRF1, 
CEBPD, TBX2, etc. As for the NASP + CAF-C3 and Non-
eHistone_CAF-C4 subgroups, TF activities like ETS1, 
ELF1, FOXP1, STAT2 were increasing (Fig.  2F, Supple-
mentary FigureS4). Furthermore, we collected key CAF 
phenotype markers surface protein genes and compared 
their expression levels among the HCs-mediated CAFs 
subgroups. The result indicated that most of them were 
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upregulated in the HSP90AB1 + CAF-C1 and DEK + 
CAF-C2 subgroups (Fig. 2G).

HCs-mediated macrophages/B cells resembled classical 
characteristics
Myeloid cells were extracted from the scRNA-seq data-
set and split into 4 minor cell types included dendritic 
cells (DCs), macrophages, mast cells, and monocytes 
(Fig.  3A). We screened out macrophages and pseudo-
time analysis also revealed that the HCs were vital to 

macrophages trajectory process (Supplementary Fig-
ureS5). We then performed NMF algorithm analy-
sis based on HCs expression. We identified 10 clusters 
named as RSF1 + Macro-C1, NAP1L1 + Macro-C2, DEK 
+ Macro-C3, ATRX + Macro-C4, NPM1 + Macro-C5, 
SET + Macro-C6, NCL + Macro-C7, HSPA8 + Macro-C8, 
HSP90AB1 + Macro-C9, and NoneHistone_ Macro-C10 
(Supplementary FigureS6). We compared each clus-
ter proportion between liver and BM samples, and we 
found that the NAP1L1 + Macro-C2 cluster possessed a 

Fig. 2 HCs modified the features of CAFs. (A) Trajectory analysis revealed the role of HCs in CAFs. (B) Cell–Cell communications from HCs-mediated 
CAFs to malignant cells. (C) Bar plot for 4 HCs-mediated CAFs clusters between brain metastasis and liver metastasis patients. (D) Heatmap showing the 
activated KEGG pathways in HCs-mediated CAFs. (E) Different HCs-mediated CAFs clusters were correlated with the previous signatures. (F) Heatmap 
showing the significantly different TFs among HCs-mediated CAFs. (G) Heatmap showing the different average expression of common signaling pathway 
genes in the HCs-mediated CAFs, including collagens, ECM, MMPs, TGFβ, Neo-Angio, Contractile, RAS and Proinflammatory
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significantly higher proportion in LM samples while the 
RSF1 + Macro-C1 cluster was more concentrated in BM 
samples (Fig. 3B). Similar to CAFs, we also noticed vary-
ing connections between HCs-mediated macrophages 
and malignant cells, that is, the RSF1 + Macro-C1 clus-
ter, NAP1L1 + Macro-C2 and DEK + Macro-C3 clusters 
had a large number of links whereas the HSP90AB1 + 
Macro-C9 and NoneHistone_ Macro-C10 clusters had 
the less (Fig.  3C). Afterwards, we calculated scores of 
the macrophage-related signatures in each cluster, and 
the result showed that the RSF1 + Macro-C1, NAP1L1 
+ Macro-C2 and DEK + Macro-C3 clusters were signifi-
cantly associated with M1-like macrophage while the 
HSP90AB1 + Macro-C9 and NoneHistone_Macro-C10 
clusters were strongly related to M2-like macrophage 
(Fig. 3D). Enrichment analysis also found obvious differ-
ences among these clusters (Supplementary FigureS7). 

Besides, we performed SCENIC analysis and found that 
multiple TFs, such as FOS, FOSB, JUN, JUNB, JUND, etc. 
were activated in the RSF1 + Macro-C1 and NAP1L1 + 
Macro-C2 clusters. However, we only observed YY1 acti-
vation in the HSP90AB1 + Macro-C9 and NoneHistone_ 
Macro-C10 clusters (Fig. 3H, Supplementary FigureS8). 
Previous studies have confirmed that macrophages play 
an essential role in metabolism. Therefore, we used 
ssGSEA algorithm to identify the relationship between 
metabolic pathway activities and each HCs-mediated 
macrophage cluster. Interestingly, significant differences 
were detected among these clusters. The RSF1 + Macro-
C1, NAP1L1 + Macro-C2, and DEK + Macro-C3 clusters 
showed higher metabolic activities in TCA cycle and 
glycolysis, etc. whereas other clusters fixed on metabolic 
pathways related to linoleic and taurine/hypotaurine acid 
metabolism (Fig. 3E).

Fig. 3 NMF clusters of HCs for macrophages and B cells. (A) t-SNE plot of myeloid cells. (B) Bar plot for 10 HCs-mediated macrophages clusters be-
tween brain metastasis and liver metastasis patients. (C) Cell–Cell communications between main HCs-mediated macrophage cells to malignant cells 
by Cellchat analysis. (D) Violin plots of M1 and M2 macrophage-related signatures scores among HCs-mediated macrophages clusters. (E) Heatmap 
showing significantly different metabolic signaling pathways among HCs-mediated macrophages clusters. (F) Bar plot for 5 HCs-mediated B cells clusters 
between brain metastasis and liver metastasis patients. (G) Cell–Cell communications between main HCs-mediated B cells to T cells by Cellchat analysis. 
(H) Heatmap showing the significantly different TFs among HCs-mediated macrophages and B cell clusters
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We also explored B cells heterogeneity based on the 
result of NMF algorithm analysis. 5 clusters were identi-
fied and named as RSF1 + B-C1, HSPA8 + B-C2, DEK + 
B-C3, ATRX + B-C4, and NoneHistone_ B-C5 (Supple-
mentary FigureS9). We found that the proportions of the 
RSF1 + B-C1 and DEK + Macro-C3 clusters were con-
sistently higher in BM samples, and the NoneHistone_ 
B-C5 cluster possessed a significantly higher proportion 
in LM samples (Fig.  3F). Cell-chat analysis showed that 
HCs-mediated B cells clusters had similar links to T cells 
(Fig. 3G). However, the result of enrichment analysis still 
indicated that the ATRX + B-C4 and NoneHistone_ B-C5 
clusters were weakly related to classic biological path-
ways (Supplementary FigureS10). Besides, we still found 
significant differences among these clusters during SCE-
NIC analysis (Fig. 3H, Supplementary FigureS11).

HCs-mediated T cell phenotypes underscored the 
antitumor immune response in BC
We renamed 6 main cell types among the detected T 
cells, including CD4+, CD8+, NK, NKT, Tregs, and other 
T cells (Fig. 4A). Monocle analyses confirmed that HCs 
were correlated with T cells trajectory process (Supple-
mentary FigureS5). By NMF algorithm analysis, we 
identified 5 HCs-mediated CD4 + T clusters (ATRX + 
CD4 + T-C1, HSP90AA1 + CD4 + T-C2, BAZ1A + CD4 
+ T-C3, SET + CD4 + T-C4, and NoneHistone_CD4 
+ T-C5), 9 HCs-mediated CD8 + T clusters (ATRX + 
CD8 + T-C1, RSF1 + CD8 + T-C2, NCL + CD8 + T-C3, 
HSPA8 + CD8 + T-C4, SET + CD8 + T-C5, DEK + CD8 
+ T-C6, NAP1L1 + CD8 + T-C7, HSP90AB1 + CD8 + 
T-C8, and NoneHistone_CD8 + T-C9), 4 HCs-mediated 
NK clusters (DEK + NK-C1, NPM1 + NK-C2, ATRX + 
NK-C3, and NoneHistone_NK-C4), and 4 HCs-mediated 
Treg clusters (HSPA8 + Treg-C1, DEK + Treg-C2, RSF1 
+ Treg-C3, and NoneHistone_Treg-C4) (Supplemen-
tary FigureS12). We performed Cell-chat analyses and 
found that the NoneHistone_Treg-C4 had more ligand-
receptor links compared with other HCs-mediated Treg 
clusters, and the NoneHistone clusters in HCs-mediated 
CD4 + T, CD8 + T, and NK cells possessed less links 
(Fig. 4B). We then assessed the proportion of each clus-
ter. Although the proportion of the NoneHistone clusters 
were consistently higher in BM samples, we only found 
significant differences in Tregs group (Fig. 4C). Besides, 
these HCs-mediated T cell phenotypes expressed obvi-
ous differences among TFs based on network regulatory 
analysis (Fig. 4D, Supplementary Figure S13-16). More-
over, HCs- mediated T clusters were associated with 
numerous differences in the expression of immune co-
inhibitors, co-stimulators, and functional T cell markers 
(Fig. 4E F).

HCs-mediated TME patterns guided Tumor prognosis and 
immunotherapy
Through the utilization of tumor samples and corre-
sponding BM samples sourced from GSE173661, along-
side normal and tumor tissues acquired from the TCGA 
database, our investigation has revealed a notable altera-
tion in the HCs activity score, indicating the significance 
of HCs in the BC process (Fig.  5A and B). We also cal-
culated the HCs activity scores between BM and LM in 
each cell type, and we found that the HCs activity scores 
in BM in malignant and B cells are higher than LM 
group, whereas are lower in other cell types (Supplemen-
tary FigureS17). In order to determine the predictive 
significance of HCs-mediated TME signature, we com-
puted the enrichment score of each HCs-mediated TME 
cell subtype. Subsequently, the HR for overall survival 
(OS) was calculated by performing univariate Cox regres-
sion analysis for each HCs-related cell subtype in 5 BC 
cohorts. Notably, we observed significant differences in 
OS rates among these sub-clusters. For example, HSPA8 
+ Treg-C1 were identified as unfavorable for BC survival, 
whereas RSF1 + Macro-C1, NAP1L1 + Macro-C2, DEK 
+ Macro-C3, ATRX + Macro-C4, NoneHistone_Macro-
C10, RSF1 + B-C1, HSPA8 + B-C2, DEK + B-C3, ATRX 
+ B-C4, ATRX + CD4 + T-C1, BAZ1A + CD4 + T-C3 
and NCL + CD8 + T-C3 were associated with a favorable 
prognosis in BC (Fig. 5C). Furthermore, in order to fore-
cast the immune response in individuals who received 
immunotherapy, we employed the logistic regression 
method to calculate the OR for immune response of each 
HCs-related cell subtype in 8 ICB cohorts. We observed 
similar significant phenomena that HCs were relevant to 
patients’ immunotherapy responses, especially for B cells 
and macrophages. For example, RSF1 + B-C1, HSPA8 + 
B-C2, DEK + B-C3, ATRX + B-C4, RSF1 + Macro-C1, 
NAP1L1 + Macro-C2, DEK + Macro-C3, and ATRX + 
Macro-C4 were associated with a favorable immunother-
apy response in BC (Fig. 5D).

The TME plays a vital role in influencing the immu-
notherapy effectiveness. Hence, we computed the can-
cer–immunity cycle scores of BC samples from the 
TCGA-BRCA. Subsequently, we conducted an analysis to 
examine the associations between the enrichment score 
of each HCs-mediated TME cell subtype and the cancer–
immunity cycle scores. Notably, the levels of different 
anti-cancer immune responses, including the release of 
cancer cell antigens, T cell recruiting, CD8 T cell recruit-
ing, Th1 cell recruiting, NK cell recruiting, and killing of 
cancer cells, were observed to be significantly elevated in 
RSF1 + Macro-C1, NAP1L1 + Macro-C2, DEK + Macro-
C3, RSF1 + B-C1, HSPA8 + B-C2 and DEK + B-C3, etc. 
(Fig.  5E). We also computed the immunoregulation-
related pathways scores of BC samples from the TCGA-
BRCA dataset as well as examined the associations 
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between the enrichment score of each HCs-mediated 
TME cell subtype with it, and we found similar significant 
phenomena that immunoregulation-related pathways 
scores were significantly elevated in RSF1 + Macro-C1, 
NAP1L1 + Macro-C2, DEK + Macro-C3, whereas were 
decreased in NCL + Macro-C7, HSPA8 + Macro-C8, and 
NoneHistone_Macro-C10, indicating that HCs might 
play an important role in TME (Fig. 5E).

HSPA8 deficiency inhibits Tumor cell migration and 
invasion
In order to investigate the impact of HCs on tumor cells, 
we specifically chose the HSPA8 to examine its poten-
tial tumorigenic effect. We firstly explore its expression 
difference between tumor and normal tissues from the 
combination of the TCGA and GTEx databases. We 
found that HSPA8 was significantly upregulated in most 
cancer type while significantly downregulated in kidney 
renal clear cell carcinoma (KIRC), kidney renal papillary 

Fig. 4 NMF clusters of HCs for T/NK cells. (A) t-SNE plot of T/NK cells by six cell types, including CD4 + T cells, CD8 + T cells, Tregs, NK cells, NKT cells, 
and other T cells. (B) Cell–Cell communications from main HCs-mediated T/NK cells to other cells by Cellchat analysis. (C) Bar plot of main HCs-mediated 
T/NK cells clusters between brain metastasis and liver metastasis patients. (D) Heatmap showing significantly different TFs among HCs-mediated clusters 
in CD4 + T cells, CD8 + T cells, NK cells, and Tregs. (E, F) Heatmap showing significantly different features among T clusters in CD4 + T cells, CD8 + T cells, 
NK cells, and Tregs, including immune stimulators, inhibitors and T cell function marker genes, as well as four T function signatures (T exhaustion score, T 
cytotoxic score, T effector score, and T evasion score)
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Fig. 5 Overall of the prognosis, immunotherapy response and immunity pathways correlations of HCs-mediated cells types in the public bulk 
RNA-seq cohorts. (A) Box plot of HCs activity between primary and paired brain metastatic tissues in GSE173661 cohort (* p < 0.05). (B) Violin plot of 
HCs activity between normal and tumor tissues in the TCGA-BRCA cohort (**** p < 0.0001). (C) Bubble plot of OS analyses (data from 5 BC cohorts). (D) 
Bubble plot of immunotherapy response analyses (data from 8 immunotherapy cohorts with response rate) (E) Heatmap showing significant correlations 
between cancer immunity cycles and immunoregulation-related pathways with all HCs-mediated cluster scores (* p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001)
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Fig. 6 (See legend on next page.)
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cell carcinoma (KIRP), and acute myeloid leukemia 
(LAML) (Fig. 6A). Then, we assessed the expression level 
of HSPA8 at the single-cell level, and Fig. 6B showed that 
HSPA8 widely distributed in various cell type. Next, we 
performed log-rank and Cox regression analyses to inves-
tigate the prognostic role of HSPA8, and we found the its 
heterogeneity in the prognostic value, that is, HSPA8 was 
a risk factor in BLCA, BRCA, CESC, HNSC, LIHC, etc. 
while was a protective factor in KIRC, LGG, OV, READ, 
etc. (Fig. 6C). Besides, we validated its prognostic value 
in BC RNA-seq and microarray datasets from bc-GenEx-
Miner database, and the results were consistent with our 
findings (Fig. 6D). To evaluate the involvement of HSPA8 
in the in vitro metastatic behavior of MDA-MB-231 and 
BT-549 cells, we employed siRNA (HSAP8) transfection 
to knock down HSPA8 expression. The expression levels 
of HSPA8 proteins were effectively decreased in MDA-
MB-231 and BT-549 cells when compared to untrans-
fected cells (Fig. 6E). As Fig. 6F H shown, knockdown of 
HSAP8 significantly decreased the migratory capacity 
of MDA-MB231 and BT-549 cells during transwell and 
wound healing assays.

Discussion
To date, numerous studies have elucidated the associa-
tion between HCs and the etiology of BC [4–6]. Never-
theless, limited research has been conducted on the 
potential tumorigenic function of HCs at the single-cell 
levels. In this current investigation, we have undertaken 
a comprehensive examination of HCs in the primary cell 
types within TME of BC. Furthermore, we have identi-
fied the diverse cell-to-cell interactions between TME 
cell subtypes associated with HCs and tumor cells, 
which represents the first instance of such an analysis. 
This novel and distinct viewpoint has provided us with 
insights into the impact of HCs on various cellular con-
stituents within TME and its influence on the outcomes 
of individual BC patients.

The predominant composition of tumor tissue com-
prises cancer epithelial cells, which play a pivotal role 

in tumor progression. Moreover, the heterogeneity 
observed among cancer epithelial cells signifies the vary-
ing response to treatment and ultimately determines 
the prognosis of patients. In addition to cancer epithe-
lial cells, TME cells, including diverse stromal cells and 
infiltrating immune cells, collectively contribute to tumor 
growth and facilitate immune evasion in solid tumors 
[33]. In our study, we observed that various cells within 
TME, including CAFs, macrophages, T cells, and B cells, 
exhibited diverse HC patterns and actively communi-
cated with tumor epithelial cells, which was evidenced by 
scRNA-seq analysis.

CAFs which are considered crucial constituents of stro-
mal cells, have been categorized into pan-dCAFs, pan-
myCAFs, pan-iCAFs, and pan-pCAFs [34, 35]. However, 
limited research has been conducted thus far to inves-
tigate the potential involvement of HCs in CAFs. Our 
study indicates that the NASP + CAF-C3 and NoneHis-
tone_CAF-C4 subgroups exhibit a closer association with 
pan-myCAF, while the HSP90AB1 + CAF-C1 and DEK + 
CAF-C2 subgroups are significantly correlated with pan-
pCAF, pan-dCAF, and pan-iCAF. Besides, we proposed 
that histone chaperones may exert an influence on the 
functionality and phenotype of CAFs. This, in turn, could 
promote the development of an immunosuppressive 
TME, ultimately expediting the malignant progression 
and metastasis of BC. We observe that the HSP90AB1 
+ CAF-C1 and DEK + CAF-C2 subgroups demonstrate 
a strong association with increased expression of TGF-β 
and inflammatory factors such as CXCL1, CXCL3, CCL2, 
IL-6, IL-7, indicating that these two subgroups might 
contribute to the formation of an immunosuppressive 
microenvironment through the secretion of CXCL1, 
IL6, CCL2 and TGF-β [36–39]. Pathway analysis further 
reveals the TGF-β signaling pathway in the DEK + CAF-
C2 subgroup and the expression of PD-L1 and the PD1 
signaling pathway in HSP90AB1 + CAF-C1, which may 
contribute to an immune-suppressive effect on T cell 
activation [40]. Consequently, we hypothesize that HC-
mediated CAFs may establish an immunosuppressive 

(See figure on previous page.)
Fig. 6 HSPA8 deficiency inhibits tumor cell migration and invasion. (A) Boxplots of the HSPA8 expression between tumor and normal tissues in 
the TCGA pan-cancer cohorts (* p < 0.05, ** p < 0.01, *** p < 0.001). (B) Heatmap of the HSPA8 expression among different cell types in TISCH database. 
(C) Heatmap of the prognostic value of HSPA8 in the TCGA pan-cancer cohorts. (D) Survival analyses of HSPA8 using K-M analyses in BC RNA-seq and 
microarray datasets from bc-GenExMiner database. (E) Western blot assays showing the efficacy of siRNAs targeting HSPA8 in BC cell lines. (F) Transwell 
migration assays were performed to measure the migration abilities of HSPA8 in BC cell lines. (G) Wound healing assays were performed to measure the 
migration abilities of HSPA8 in BC cell lines. (H) Boxplots of the number of cells migrated per field and relative healing area (% control) in BC cell lines (* 
p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; 
CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid 
neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; 
KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain 
lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, 
ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarci-
noma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell 
tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, ocular melanomas. 
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; KIPAN, pan-kidney cancer; LSCC, laryngeal squamous cell carcinoma; OS, osteosarcoma
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interaction with tumor cells, thereby facilitating tumor 
progression and metastasis. Moreover, we observed a 
strong correlation between the C1 and C2 subgroups 
and the upregulation of extracellular matrix (ECM) fac-
tors and matrix metalloproteinases (MMPs) such as FN1, 
ELN, MMP9, MMP14, and MMP11. Numerous recent 
studies consistently indicate that activated fibroblasts 
exert control over the progression and metastasis of can-
cer through their active secretory protein, comprising 
MMP11, MMP14, and FN1 [41–45].

Macrophages, widely distributed throughout the 
body, play a crucial role in maintaining homeostasis and 
defending against pathogen intrusion. Macrophages in 
various tissues undergo polarization in response to envi-
ronmental changes, resulting in distinct macrophage 
subtypes, such as M1 and M2 macrophages [10, 46]. 
Notably, M2 macrophages play a vital role in promoting 
tumor growth and metastasis and are closely associated 
with unfavorable prognoses in neoplastic conditions. 
In contrast, M1 macrophages are commonly regarded 
as macrophages with tumor-killing properties, primar-
ily functioning in anti-tumor activities and immune 
promotion [47]. Our findings indicate that the RSF1 + 
Macro-C1, NAP1L1 + Macro-C2, and DEK + Macro-C3 
clusters exhibit higher scores of M1 macrophage-related 
signatures compared to the remaining Macro-subtypes. 
Conversely, the HSP90AB1 + Macro-C9 and NoneHis-
tone_Macro-C10 clusters demonstrate a strong asso-
ciation with M2-like macrophages. Furthermore, we 
have observed variations in the number of connections 
between HCs-mediated macrophages and malignant 
cells. Specifically, the RSF1 + Macro-C1, NAP1L1 + 
Macro-C2, and DEK + Macro-C3 clusters display a larger 
number of connections, while the HSP90AB1 + Macro-
C9 and NoneHistone_Macro-C10 clusters exhibit a lower 
number of connections. The analysis of pathways also 
indicated the involvement of TAMs in the tricarboxylic 
acid (TCA) cycle and glycolysis signaling pathway in the 
RSF1 + Macro-C1, NAP1L1 + Macro-C2, and DEK + 
Macro-C3 clusters. M1-like macrophages are commonly 
linked to an extensively glycolytic metabolism and a 
robust ability to produce reactive oxygen species, which 
forms the basis of their cytotoxic activities [48, 49]. We 
also found that the enrichment score of RSF1 + Macro-
C1, NAP1L1 + Macro-C2, and DEK + Macro-C3 clusters 
have a positive correlation with Cancer immunity cycles 
score and immunoregulation-related pathways score 
which indicated a high activity level of all cancer immu-
nity steps [31, 32].

For Treg cells, we observed that the NoneHistone clus-
ters exhibited a greater number of ligand-receptor con-
nections compared to other Treg clusters mediated by 
HCs, while the NoneHistone clusters in HCs-mediated 
macrophages, B cells, CD4 + T cells, CD8 + T cells, 

and NK cells displayed fewer connections. The preva-
lence of NoneHistone clusters was consistently higher 
in BM samples, with the exception of B cells. Addition-
ally, the four main T cell subtypes mediated by HCs dis-
played varying levels of T cell activity and inactivity. For 
example, ATRX-CD4 + T-C1cluster has a high score of 
four T function signatures and low expression of T cell 
inhibitors and T cell function marker genes, DEK-NK-C1 
cluster has high level of T cytotoxic score and T effector 
score, and NoneHistone-NK-C4 cluster has high level of 
T exhaustion score and T evasion score. These findings 
collectively suggest the significant involvement of HCs in 
evading the immune system and the role of macrophages 
and T cells in promoting tumor growth.

In order to determine the gene regulatory networks 
specific to each cell type, we analyzed TFs at the scRNA-
seq level. Overall, each subtype of CAFs, macrophages, B 
cells, and various T cell types exhibited distinct charac-
teristics in terms of transcription factors. For CAFs, the 
subgroups HSP90AB1 + CAF-C1 and DEK + CAF-C2 
displayed a distinctive transcription factor gene signa-
ture, including KLF4, which facilitated the transcription 
of CH25H. This resulted in the inhibition of extracellular 
vesicle uptake by NFs, thereby impeding the conversion 
of NF to CAFs [50]. Furthermore, the NoneHistone_
CAF-C4 subgroups exhibited heightened TEAD1 activ-
ity, which promoted the conversion of NF to CAFs [51].

Additionally, we observed distinct transcription factor 
characteristics in HCs-mediated cell subtypes for B and 
T cells. For instance, HSPA8 + Treg-C1 and DEK + Treg-
C2 exhibited a distinct TF gene signature, such as JUNB, 
which alerts Tregs of the developing Teff activation and 
coordinates immune regulation to maintain the immu-
nosuppressive effect of Treg [52]. On the other hand, C3 
and C4 exhibited heightened activity of YY1 and STAT1, 
with the former acting as an inhibitory factor for Treg’s 
immunosuppressive function, while abnormal expression 
levels of the latter can result in dysfunction of Treg-medi-
ated immune suppression [53, 54]. In summary, different 
types of cells facilitated by HCs might have an impact on 
specific TF regulatory systems, leading to the restructur-
ing and reprogramming of the TME.

In light of the intricate intrinsic patterns exhibited by 
HCs in TME cells, we conducted a comprehensive analy-
sis to summarize the associations between the scores of 
these subclusters and their impact on both prognosis 
and immune response. We observed significant prog-
nostic disparities in BC patients based on the varying 
dominance of HCs in TME cells by utilizing multiple bulk 
RNA-seq cohorts. Furthermore, we identified a notable 
distinction in immune response among patients who 
underwent immune checkpoint blockade (ICB) therapy, 
particularly in B cells and macrophages. These findings 
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underscore the crucial role of TME HCs in the context of 
BC and warrant further investigation.

HSPA8, one of the HCs, was chosen as the subject of an 
investigation to the processes of tumor metastasis. Pan-
cancer analysis revealed the oncogenic nature of HSPA8 
in a majority of tumors, including BC. Furthermore, our 
in vitro experiments yielded evidence indicating that 
HSPA8 functions as an oncogenic gene, facilitating tumor 
metastasis and invasion. Consequently, this discovery 
presents a novel avenue for future cancer prevention and 
treatment, offering a potential target and therapeutic 
strategy.

Conclusions
In this study, we employed the scRNA-seq analysis 
method to successfully identify distinct HCs-mediated 
cell subtypes of TME cells. Furthermore, we elucidated 
the role of HCs-mediated intercellular communication in 
regulating tumor growth and antitumor immunomodula-
tory processes, serving as important prognostic markers 
and indicators of ICB efficacy in BC cohorts.
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