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Abstract 

Background Multiple myeloma (MM) is the second most common refractory hematologic cancer. Searching for new 
targets and prognostic markers for MM is significant.

Methods GSE39754, GSE6477 and GSE24080 were downloaded from the Gene Expression Omnibus (GEO) database. 
Differentially expressed genes (DEGs) in MM versus healthy people from GSE39754 and GSE6477 were screened using 
limma package, and MM-related module genes were chosen with the use of Weighted gene co-expression network 
analysis (WGCNA), and the two were intersected using ggVennDiagram for obtaining MM-related DEGs. Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out. Then, protein–protein 
interactions (PPI) analysis in String database was used to obtain hub genes, while prognosis was analyzed by survival 
package in GSE24080. Receiver operating characteristic (ROC) curve was adopted for evaluating diagnostic value 
of hub genes. Besides, univariable/multivariable Cox regression were employed to screen independent prognostic 
biomarkers. Gene set enrichment analysis (GSEA) was used to find possible mechanism. Finally, western-blotting 
and reverse transcription-polymerase chain reaction (RT-PCR) verify TYROBP expression within MM and healthy 
people. We performed cell adhesion and transwell assays for investigating TYROBP function in MM cell adhesion 
and migration.

Results Through differential analyses, 92 MM-related DEGs were obtained. 10 hub genes were identified by PPI 
and CytoHubba. Their diagnostic and prognostic significance was analyzed. Down-regulation of genes like TYROBP, 
ELANE, MNDA, and MPO related to dismal MM prognosis. Upon univariable/multivariable Cox regression, TYROBP 
independently predicted MM prognosis. GSEA pathway was enriched, indicating that TYROBP expression affected 
MM development via cell adhesion molecular pathway. Upon Western-blotting and RT-PCR assays, TYROBP expres-
sion among MM patients decreased relative to healthy donors. Cell adhesion and transwell migration assays revealed 
increased MM cell adhesion and decreased migration upon TYROBP up-regulation.

Conclusion In summary, TYROBP is a potential prognostic marker for MM.
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Introduction
Multiple myeloma (MM), a refractory disease, shows the 
typical feature of abnormal clonal plasma cell prolifera-
tion, and it occupies approximately 10% of hematologi-
cal malignancies [1]. Malignant proliferation of plasma 
cells may lead to osteolytic osteopathy, kidney dam-
age, anemia and hypercalcemia [2]. Currently, the diag-
nostic and prognostic biomarkers for MM have been 
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identified, but MM still has high morbidity and mortality 
rates [3], remains incurable, and exhibit poor prognosis 
for patients [4]. As a result, it is of great significance to 
search for effective prognostic markers and explore new 
targets for the clinical improvement of MM prognosis.

Tyrosine kinase binding protein TYROBP(DAP12) is a 
transmembrane signal transduction polypeptide, which 
binds to a variety of receptors activated on the surface 
of immune cells and regulates immune cell function 
through signal transduction [5, 6]. TYROBP regulates 
the production of inflammatory factors in immune cells, 
thus mediating the inflammatory response in the body 
[7]. Inflammation is not only closely related to immune 
response and leads to the occurrence of numerous dis-
eases, but is also an important factor for cancer genesis 
and progression [8, 9]. When TYROBP binds to its recep-
tor TREM-1, it initiates the intracellular signaling cas-
cade by means of synergistic action with TLR signaling, 
thus amplifying the inflammatory response in vivo [10]. 
In addition, the TYROBP-SYK pathway promotes TGF-β 
secretion in macrophages, while this in term promotes 
tumor progression [11]. The TYROBP/ITAM2 signal-
ing pathway can promote the malignant growth of liver 
cancer cells [12]. Moreover, studies have reported that 
TYROBP is a potential pathogenic oncogene in gastric 
cancer, renal clear cell carcinoma, and glioma [13–15]. 
TYROBP is extensively investigated as the possible target 
and prognostic marker for the development and metasta-
sis of renal cancer [16], osteosarcoma [17, 18] and breast 
cancer [19]. In conclusion, TYROBP is tightly associated 
with cancer progression. However, its function in MM 
remains unclear.

In this study, DEGs associated with MM were screened 
based on GEO database. Finally, TYROBP was found to 
be an independent prognostic factor for MM. Compared 
with healthy controls, TYROBP expression was signifi-
cantly downregulated in MM patients. In accordance 
with GSEA results of low- and high-TYROBP-expression 
groups, TYROBP might probably impact MM cell migra-
tion and adhesion through influencing changes in cell 
adhesion molecules, leading to poor prognosis of MM 
patients. Based on bioinformatics analysis and experi-
mental verification, this study revealed the potential role 
and prognostic value of TYROBP in MM. Collectively, 
findings in this study contribute to better understanding 
the potential molecular mechanism underlying MM gen-
esis and progression.

Materials and methods
Microarray data
Gene expression datasets GSE39754, GSE6477 and 
GSE24080 were obtained based on NCBI-GEO (http:// 

www. ncbi. nlm. nih. gov/ geo). GSE39754 data were 
acquired with GPL5175 platform ([HuEx-1_0-st] Affy-
metrix Human Exon 1.0 ST Array [transcript (gene) 
version]), which involved purified plasma cell samples 
obtained in 170 MM cases together with 6 normal sub-
jects. GSE6477 data were obtained from the GPL96 
platform ([HG-U133a] Affymetrix Human Genome 
U133A Array), which included purified plasma cell sam-
ples collected in 103 cases as well as 15 normal subjects. 
GSE24080 data were gathered from the GPL570 ([HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array), which contained bone marrow plasma cell gene 
expression profiles for survival analysis and GSEA.

DEGs identification and weighted gene co‑expression 
network analysis (WGCNA)
The DEGs (DEG1 and DEG2) in MM patients and normal 
donor samples from GSE39754 and GSE6477 datasets 
were explored using limma package, with the threshold 
being set to an adjusted P < 0.05 and |log2FC| ＞ 1. Visu-
alization analysis was performed by plotting heat maps 
and volcano maps using the circlize package and ggplot2, 
respectively. In addition, we utilized R-package software 
WGCNA for constructing and analyzing co-expression 
network of GSE39754 dataset. The modules with the 
highest correlation with MM traits were obtained, mean-
while, the module genes were acquired.

DEGs related to MM and functional enrichment analysis
In this work, we drew Venn diagram for obtaining MM-
related DEGs. The biological functions of DEGs related 
to MM were assessed using GOplot and ccgraph for 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment, respectively. 
Notably, the biological functions were divided into bio-
logical process (BP), molecular function (MF), and cellu-
lar component (CC) categories.

Establishment of PPI network and identification of hub 
gene
Online String database (http:// string- db. org/ cgi/ input. 
pl) was adopted for predicting protein interaction. In 
brief, MM-related DEGs were uploaded into the String 
database and the smallest interaction score of 0.4 was 
selected to obtain the result file. Meanwhile, the result 
was analyzed visually using Cytoscape, and the top 10 
MCC scoring genes were determined by the cytoHubba 
plug-in, which were denoted as hub genes.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://string-db.org/cgi/input.pl
http://string-db.org/cgi/input.pl
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Receiver operating characteristic (ROC) curve and Kaplan–
Meier (KM) survival curve
In GSE39754 and GSE6477 dataset, diagnostic curves of 
a single hub gene were drawn using "pROC" to evaluate 
the sensitivity and specificity of a single hub gene in the 
diagnosis of MM. In the GSE24080 dataset, the survival 
kit was utilized for analyzing the survival of the single 
hub gene with high or low expression and the prognostic 
significance of high- or low-TYROBP-expression group 
under different clinical characteristics. In line with the 
median value of single gene expression, MM patients 
were divided into high- and low- expression groups.

GSEA functional enrichment analysis
In the GSE24080 dataset, all genes in high- or low-
TYROBP-expression group were analyzed by using 
package R clusterProfiler and package org.Hs.eg.db (ver-
sion 3.15.0), respectively, with thresholds being set as 
|NES|> 1 and P < 0.05.

Patient samples collection and ethics consent
In this study, newly diagnosed samples from MM 
patients at Department of Hematology, Affiliated Hos-
pital of Guizhou Medical University from 2021 to 2023 
were selected by random sampling. All these patients sat-
isfied the diagnostic criteria for MM recommended by 
National comprehensive cancer network (NCCN)2022. 
In addition, 22 healthy donors and 35 patients were col-
lected. Mononuclear cells were extracted from all the col-
lected samples. Based on the Helsinki Declaration, the 
informed consent was first obtained in writing. We have 
obtained the approval of the institutional ethics commit-
tee and the right of informed consent from the patients 
in advance. Additional file 1: Table S1 provides character-
istics of multiple myeloma patients and healthy donors.

Cell lines and cell transfection
Human myeloma cell lines U266 and RPMI8226 were 
obtained from the Shanghai FuHeng Biology in 2022. All 
cell lines were authenticated by short tandem repeat pro-
filing. All cells were cultured in RPMI-1640 containing 
10% Fetal bovine serum (FBS) and 1% Penicillin–Strep-
tomycin. The cells were incubated at 37 °C in an atmos-
phere of 5% CO2.

We obtained human TYROBP overexpression cloned 
lentiviral particle (L-TYROBP) in Genechem Co., Ltd. 
(Shanghai, China) for TYROBP transfection in line with 
specific protocols. Empty vector (EV)-transfected cells 
(U266 and RPMI8226) were adopted to be controls. Fol-
lowing amplification, cells were maintained within RPMI-
1640 medium that contained 10%FBS for a 5-day period. 
Then, U266 and RPMI8226 cells stably transfected with 

L-TYROBP were screened with puromycin(1 ug/ml), and 
Western-Blotting and RT-PCR were performed to verify 
the transfection efficiency.

Western‑Blotting assay
Radio immunoprecipitation assay (RIPA) lysate that con-
tained 1% Phenylmethylsulfonyl fluoride (PMSF) was 
used to lyse MM cells (cell lines and clinical samples), 
while BCA kit was utilized to detect protein content. 
Afterwards, 30  ug protein sample was loaded onto the 
12% SDS-PAGE gel and the isolated proteins were trans-
ferred onto PolyVinylidene Fluoride (PVDF) membranes. 
Thereafter, 5% defatted milk was added to seal PVDF 
membranes for at least 2  h, and Twen-containing triple 
buffered brine was added to wash membranes. Later, 
membranes were subjected to overnight incubation using 
target antibody, washing again, and 45-min incubation 
using secondary antibody. After washing again, target 
protein levels were measured through the electrochemi-
luminescence method, while imageJ_v1.8.0 was utilized 
to detect gray value.

RT‑PCR
In line with specific protocols, the Trizol reagent was 
utilized to extract total RNA, which was later prepared 
in cDNA through reverse transcription using a reverse 
transcription kit. Afterwards, SYBR Green kit (Tiangen 
Biotechnology) and RT-PCR primer (Generay Biotech) 
were utilized to test cDNA in the sample. The Bio-Rad 
instrument was used to test the sample cyclic threshold 
(CT) value. With beta-actin being a reference, relative 
target gene level was calculated through comparing the 
CT value  (2 − ΔCT). Primers below were utilized in the pre-
sent work:

β-actin F, 5ʹ-CTA CCT CAT GAA GAT CCT CAC CGA -3ʹ;
β-actin R, 5ʹ-TTC TCC TTA ATG TCA CGC ACG ATT -3ʹ;
TYROBP F, 5ʹ-TCC TGC TGG CTG TAA GTG A-3ʹ;
TYROBP R, 5ʹ-CAT CCG ACC TCT GAC CCT -3ʹ.

Cell adhesion
Cell adhesion was analyzed using the cell adhesion detec-
tion kit (Bestbio, BB-48120). Briefly, 100 ul coating solu-
tion was added into each well of the 96-well plate, and 
the 96-well plate was later placed in a 4 ℃ refrigerator 
overnight. After removing the coating liquid, the 96-well 
plate was washed with 100ul washing liquid for 1–3 times 
after it was completely dried. Subsequently, cells (5 ×  104 
/100 ul/well) were incubated in an incubator under 37 °C 
for 2  h, and 5 replicate wells together with a control 
group were set. Later, the culture plate was removed, the 
medium was discarded, and relevant medium was added 
to wash the plate for 2–3 times, followed by the addition 
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of 100 ul freshly prepared medium into every well. After-
wards, 10ul cell staining solution was introduced to incu-
bate at 37 ℃ for 0.5–3 h. The absorbance at 450 nm was 
detected with an enzymoleter.

Transwell migration assay
In the transwell migration assay, serum-free medium was 
added to re-suspend the cell suspensions to  105 cells/
ml. Thereafter, 100  ul cell suspensions were introduced 
into top chamber of the 24-well plate transwell chamber, 
while 600 ul of 20% FBS was introduced into lower cham-
ber for 24 h incubation at 37 ℃ and 5% carbon dioxide 
conditions. After 24 h, the cell medium was abandoned, 
cells were subjected to 30-min fixation using paraform-
aldehyde and 30-min staining using 0.1% crystal violet. 
Those stained cells were then cleaned thrice using PBS 
and observed under the inverted microscope.

Data analysis
The wilcox.test test was conducted for comparing gene 
levels between patient and healthy samples in the dataset. 
Prognostic factors for MM were identified through uni-
variable and multivariable Cox regression. Comparisons 
of the two groups were conducted with Student’s t-test. 
All experiments were conducted at least three times. A 
mean ± SD was used for all quantitative data. P < 0.05 
was determined as statistically significant.

Results
Identification of DEGs and susceptibility modules
DEGs between MM patients and normal donors from 
the GEO datasets (GSE39754 and GSE6477) were 
screened. As a result, DEG1, including 1022 down-regu-
lated genes and 1996 up-regulated genes, were screened 
from GSE39754 dataset; whereas DEG2 (including 548 
down-regulated genes while 356 up-regulated ones) 
were obtained from GSE6477 dataset, as displayed in the 
forms of heat maps and volcano maps (Fig. 1A–D). Later, 
WGCNA was performed on GSE39754 dataset. Firstly, 
cluster analysis was conducted to observe whether there 
were outliers (two samples were removed, while 174 
were retained), as shown in Fig.  1E. Secondly, accord-
ing to the gene clustering of all samples, a suitable soft 
threshold was selected for network topology analysis. 
Typically, the value was selected in the sense of  R2 ≥ 0.85, 
and finally 8 was chosen to be the soft threshold (Fig. 1F). 
Then, the topological matrix obtained by the differences 
between genes was used for clustering. The adjacency 
and divergence coefficient between genes were calcu-
lated, and the tree was divided into different modules 
(with at least 50 genes in each module) by the dynamic 
clipping technique, as shown in Fig.  1G. Eventually, the 
heat map showing relationship of modules was drawn, 

then module gene most significantly correlated with 
tumor traits was screened. According to our results, the 
gene module most closely correlated with phenotype was 
brown module (601 genes, Fig. 1H), which was selected 
for later analyses.

Functional annotation of MM‑related DEGs 
and identification of hub genes
Firstly, DEG1 and DEG2 were intersected with Brown 
module genes to obtain altogether 204 DEGs, including 
63 with up-regulation whereas 141 with down-regula-
tion, and 92 of them were MM-related DEGs (Fig.  2A). 
Secondly, the MM-related DEGs were exposed to GO 
and KEGG analyses. In total, 680 GO items were mainly 
enriched and analyzed, and it was found that the BP 
terms enriched were mainly in defense response to bac-
terium and cell chemotaxis, the CC terms enriched 
included secretory granule lumen and cytoplasmic vesi-
cle lumen, and the MF terms enriched were glycosamino-
glycan binding, heparin binding and lipopolysaccharide 
binding (Fig. 2B). Furthermore, KEGG enrichment anal-
ysis revealed some signaling pathways involved in MM-
related DEGs (Fig.  2C), mainly including Neutrophil 
extracellular trap formation, Amoebiasis and Phagosome 
pathways. Moreover, a PPI network that involved 78 pro-
teins with 78 nodes and 434 edges was established by 
Cytoscape on the basis of String database (Fig. 2D). We 
chose the top 10 genes in the MCC score to be hub genes 
for further analysis (Fig.  2E), including S100A9, NCF2, 
TLR2, TYROBP, PTPRC, MPO, CTSG, ELANE, MNDA 
and ITGB2.

Diagnostic significance and survival analyses of hub genes
First, in the GSE39754 and GSE6477 datasets, the ROC 
diagnostic curve of a single hub gene was plotted. As 
observed from Fig.  3A, there were 8 genes with AUC 
values greater than 0.8 in the GE39754 dataset (TLR2, 
CTSG, MPO, MNDA, TYROBP, ELANE, ITGB2, and 
S100A9). According to Fig.  3B, there were 8 genes 
(PTPRC, CTSG, MPO, MNDA, TYROBP, ELANE, 
ITGB2, and S100A9) with AUC values greater than 0.8 
in the GSE6477 dataset. Then, the differential analysis of 
hub gene between MM and health donors was verified in 
GSE39754 and GSE6477 datasets (Fig. 3C, D), as a result, 
hub gene expression decreased in both datasets. Finally, 
based on median expression of single gene, we classi-
fied hub genes as high- or low-expression group. For 
GSE24080 dataset, survival analysis was conducted for 
hub genes in high- or low-expression group. The results 
suggested that only TYROBP, ELANE, MNDA and MPO 
genes showed significant differential expression in high- 
versus low-expression groups (Fig. 3E).
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Fig. 1 DEGs and WGCNA. Heatmaps and volcano plots showing DEGs in GSE39754 (A, B) and GSE6477 (C, D). E Sample clustering conducted 
according to GSE39754 dataset. F Scale-free fit index and the mean connectivity of 1–20 soft-threshold power. G Gene tree diagram. The 
colored line underneath the tree diagram indicates modules examined with dynamic tree cutting. H Heatmap showing relation of feature genes 
in the module with multiple myeloma
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Fig. 2 Enrichment analysis and hub gene identification. A Venn diagram showing the number of DEGs related to multiple myeloma. B GO 
functional annotation of DEGs associated with multiple myeloma. C KEGG analysis on DEGs associated with multiple myeloma. D, E PPI network 
analysis showing the hub genes
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Fig. 3 Diagnosis and survival analyses on hub genes. A, B ROC analysis of hub genes diagnostic value in multiple myeloma based on GSE39754 
and GSE6477. C, D Expression of hub genes based on GSE39754 and GSE6477. E Survival analysis on hub genes
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Independent prognostic significance of hub genes 
and GSEA
We utilized Cox regression model for analyzing rela-
tion of AGE, CREAT, LDH, ISOTYPE, ALB, MRI, B2M, 
Cyto and Hub genes levels and survival time among MM 
patients. As revealed by univariable and multivariable 
regression, LDH, ALB, MRI, B2M, Cyto and TYROBP 
were used as the independent prognostic factors for MM 
(Fig. 4A, B). Later, we built a nomogram by incorporat-
ing the independent prognostic factors for predicting 
1-, 3- and 5-year survival rates in MM patients (Fig. 4C). 
Moreover, the corresponding calibration curve was 
drawn, and its C-index was 0.763, suggesting the supe-
rior performance of this nomogram (Fig. 4D). To further 
explore the possible molecular function of TYROBP gene 
within multiple myeloma, we carried out GSEA on genes 
of high- and low-TYROBP-expression groups. KEGG 
analysis revealed significant changes in cell adhesion 
molecules, chemokine pathways, neutrophil peripheral 
trap formation, phagocytic vesicles, and Tuberculosis 
signaling pathways in high- and low-TYROBP-expres-
sion groups (Fig. 4E). It was hypothesized that TYROBP 
expression might contribute to the adhesion and migra-
tion of MM by influencing the changes of cell adhesion 
molecules.

Survival analysis of high‑ and low‑TYROBP‑expression 
groups under different clinical characteristics
MM patients were grouped according to different clini-
cal features, such as AGE, MRI, ISOTYPE, and SEX. 
Thereafter, the classification groups with different clini-
cal features were further grouped according to the high- 
and low-TYROBP-expression groups for KM analysis. 
As a result, there was prognostic significance when the 
patients younger than 65 years old, having MRI lesions, 
IGA type, and female patients were grouped. This finding 
indicated the survival differences between the high- and 
low-TYROBP-expression groups for most clinical fea-
tures (Fig. 5A–D).

TYROBP was down‑regulated in MM and TYROBP 
up‑regulation promoted the adhesion of MM 
and decreased its migration
Next, TYROBP expression in MM and its prognostic 
value were verified by using clinical samples and conduct-
ing in  vitro cell experiments. To verify TYROBP levels 
among MM patients, we examined TYROBP mRNA and 
protein expression within bone marrow blood samples 
from MM patients and normal donors. According to RT-
PCR analysis, TYROBP mRNA expression among MM 
patients markedly decreased relative to normal donors 
(Fig. 6A). Based on Western-Blotting analysis, TYROBP 
protein expression among MM patients significantly 

decreased relative to normal donors (Fig.  6B). It is well 
known that changes in cell adhesion molecules are 
important factors for tumor metastasis. Therefore, we 
investigated how TYROBP affected myeloma cell adhe-
sion and migration when TYROBP was highly expressed 
in MM cells. As revealed by Western-blotting assays 
and PCR, TYROBP expression successfully increased in 
myeloma cells (Fig.  6C, D). Cell adhesion experiments 
suggested that TYROBP up-regulation promoted cell 
adhesion (Fig.  6E). Transwell migration assay demon-
strated that cell migration ability was weakened when 
TYROBP was highly expressed (Fig. 6F).

Discussion
MM tends to occur in the elderly, with a median age of 
diagnosis being 69 years [20]. Its incidence may probably 
increase year by year with the progression of the aging 
society and the development of disease understanding 
and diagnosis and treatment technologies. Despite great 
improvements in existing treatments, the overall prog-
nosis of MM patients remains poor, and MM is still a 
refractory disease due to relapse and drug resistance [21]. 
Consequently, the search for new prognostic biomarkers 
for MM patients provides new ideas for diagnosing and 
treating myeloma and improving patient outcomes.

Bioinformatics analysis was conducted in the present 
work to integrate two datasets, GSE39754 and GSE6477, 
for the sake of identifying 92 DEGs most significantly 
related to MM through a series of analyses. Further GO 
and KEGG pathway analyses indicated that these 92 
DEGs were significantly enriched in cell chemotaxis, 
glycosaminoglycan binding, lipopolysaccharide bind-
ing, and Neutrophil extracellular trap formation. Cell 
chemotaxis is an important factor for promoting tumor 
progression and metastasis [22]. Meanwhile, glycosami-
noglycan is an important component of tumor microen-
vironment, which can affect tumor growth, migration, 
invasion and angiogenesis through various ways such as 
binding to cytokines, thus affecting tumor progression. 
It has great potential in the targeted therapy of cancer 
[23–25]. Lipopolysaccharide (LPS) binds to the TLR4 on 
tumor cell surface for activating NF-KB pathway to regu-
late tumor cell invasion and migration [26]. Neutrophil 
extracellular trap formation has a critical effect on tumor 
genesis and progression, promoting tumor angiogenesis, 
metastasis and diffusion [27]. These results suggest that 
the MM-related DEGs may influence MM biological 
behavior through these pathways, thereby regulating MM 
genesis and progression. For identifying genes related to 
MM development, the PPI network was constructed to 
screen key hub genes, among which, the 10 most signifi-
cant ones were recorded as hub genes. Then, these hub 
genes were subjected to ROC diagnosis and survival 
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analyses, and univariable and multivariable regression 
was performed on hub genes and clinical characteristics. 

As a result, LDH, ALB, MRI, B2M, Cyto and TYROBP 
were identified as independent prognostic factors.

Fig. 4 Relationship between hub genes and multiple myeloma prognosis as well as GSEA enrichment analysis. A Forest map according 
to univariate Cox regression of OS for multiple myeloma patients. B Forest map according to multivariate Cox regression of OS in multiple myeloma 
patients. C Nomogram predicting the survival rate. D Calibration curve predicting the performance of nomogram model. E GESA enrichment 
analysis exploring the potential functions
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Fig. 5 Kaplan–Meier survival curve predicts the survival probability under different clinical features
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TYROBP represents the type I transmembrane adap-
tor protein whose cytoplasmic domain contains an 
immune receptor tyrosine activation motif ITAM. 
After TYROBP combines with the activated receptor, 
SRC kinase can phosphorylate ITAM motifs to its two 

conserved tyrosine residues, thereby recruiting and 
activating intracellular protein kinases including SYK, 
which affects multiple downstream effector molecules. 
Phosphatidylinositol 3-kinase (PI3K), phospholipase 
Cγ (PLCγ) and small GTPase RAS can be mobilized 

Fig. 6 TYROBP is lowly expressed in multiple myeloma and overexpression of TYROBP promotes myeloma cells adhesion and inhibits their 
migration. A RT-PCR conducted to analyze the mRNA expression of TYROBP. B Western blot was employed to determine the expression level 
of TYROBP in multiple myeloma. C TYROBP overexpression determined by Western blot in U266 and RPMI8226 cells. D RT-PCR revealing 
the successful up-regulation of TYROBP. E Adhesion assay suggesting that TYROBP facilitated the adhesion of U266 and RPMI8226 cells. F Transwell 
migration assay proving that TYROBP overexpression inhabited the migration of U266 and RPMI8226 cells. *p < 0.05, **p < 0.01 and ***p < 0.001
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to affect cell transcriptional activation, proliferation 
and survival, cytokine secretion, and phagocytosis [6]. 
Notably, the aberrant TYROBP expression is related to 
the genesis and progression of various disorders, and it 
is related to the pathogenic mechanism of Alzheimer’s 
disease [28] and cognitive dysfunction. TYROBP on 
lung macrophages can mediate acute non-infectious 
lung tissue injury through affecting transendothelial 
migration of neutrophils [29]. TYROBP promotes the 
development of inflammation-mediated atrial fibrilla-
tion through PI3K-AKT pathway [30]. As discovered 
from an article on neuropathic pain, TYROBP pro-
moted inflammatory factor levels like TNF-α, IL-6, 
and inflammation-related genes, showing a pro-inflam-
matory response [31]. When TYROBP receptors such 
as TREM2 bind to ligands to form the ligand-receptor 
complexes, ITAM phosphorylation in the cytoplasmic 
region of TYROBP is triggered to recruit and mediate 
SYK phosphorylation, thereby activating the down-
stream signaling pathways like PI3K and MAPK path-
ways [32]. PI3K exerts an important effect on a variety 
of cell activities, and shows abnormal activation in can-
cer, thereby participating in tumor genesis and develop-
ment. Inhibitors targeting this signaling pathway, some 
of which are approved for treating cancer in clinic, have 
certain significance for increasing cancer patients sur-
vival rates [33]. MAPK pathway is related to regulating 
cell growth, cycle, differentiation, development, apop-
tosis, and other important physiological processes. 
Human cancer is tightly associated with disorder of 
this pathway, which can promote tumor proliferation, 
survival, invasion, metastasis, extracellular matrix 
degradation and angiogenesis [34]. As mentioned in 
the preface, a number of studies have also proved that 
TYROBP is a prognostic marker of tumors and affects 
tumor progression. In our study, we found that cell 
adhesion molecules, chemokine signaling pathway, and 
neutrophil extracellular trap were mainly enriched by 
GSEA enrichment analysis on high- and low-TYROBP-
expression groups, which were closely associated with 
tumor migration and invasion. Cell adhesion related 
molecules are important factors for determining tumor 
migration and invasion, which also affect the progres-
sion of MM [35]. To further analyze how TYROBP 
affected MM progression, we verified the low expres-
sion of TYROBP in multiple myeloma bone marrow 
samples and in vitro cell adhesion assay found that the 
high expression of TYROBP promoted cell adhesion. 
Transwell migration assay suggested that the migra-
tion of myeloma cells was reduced when TYROBP was 

highly expressed. Based on the above analysis results, 
we confirmed that TYROBP could be used to diagnose 
and predict MM prognosis, and verified that the high 
expression of TYROBP promoted the adhesion of MM 
cells and weakened their migration.

However, certain limitations should be pointed out 
in the present study. No analysis was made to compare 
TYROBP gene expression levels between metastatic 
and non-metastatic MM patient groups in the GSE data 
sets owing to the absence of metastatic and non-met-
astatic indicators. At the same time, there lacks of spe-
cific mechanisms and in  vivo validation of the role of 
TYROBP overexpression in affecting the adhesion and 
migration of MM. We did, however, confirm that low 
TYROBP expression independently predicted poor prog-
nosis of MM, and this was experimentally validated in 
clinical samples and in vitro studies. The mechanism by 
which TYROBP regulates cell adhesion affecting MM 
genesis and progression requires further experimental 
exploration, so as to shed novel lights and provide drug 
targets clinical treatment.

Conclusion
Our study indicated that TYROBP was lowly expressed 
in MM, and its low expression predicted poor prognosis 
of MM patients. Multivariable COX regression revealed 
that TYROBP independently predicted the progno-
sis of MM. In addition, TYROBP was probably related 
to pathological development of MM via cancer-related 
signaling pathways, such as cell adhesion molecule sign-
aling. TYROBP up-regulation promoted MM cell adhe-
sion and decreased their migration. According to these 
results, TYROBP is a novel oncogene in MM, which may 
be a potential biomarker. However, further mechanism 
studies and in vivo experiments should be conducted for 
determining the clinical value of TYROBP.

Abbreviations
MM  Multiple myeloma
GEO  Gene expression omnibus
DEGs  Differentially expressed genes
WGCNA  Weighted gene co-expression network analysis
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
PPI  Protein–protein interactions
ROC  Receiver operating characteristic
GSEA  Gene set enrichment analysis
RT-PCR  Reverse transcription-polymerase chain reaction
KM  Kaplan–Meier
NCCN  National Comprehensive Cancer Network
FBS  Fetal bovine serum
RIPA  Radio immunoprecipitation assay
PMSF  Phenylmethylsulfonyl fluoride
PVDF  Poly vinylidene fluoride



Page 13 of 14Luo et al. Cancer Cell International          (2024) 24:117  

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12935- 024- 03304-6.

Additional file 1: Table S1. The characteristics of patients with multiple 
myeloma and healthy donors.

Acknowledgements
Not applicable.

Author contributions
JSW, HL and CYP were involved in the study conception and design. 
HL,LW,LZ,SYC and XYH performed the experiments. TZH: technical and operat-
ing assistance. NQZ and QS prepared Additional file 1: Table S1. HL wrote the 
original manuscript. All authors revised the manuscript. All authors read and 
approved the final manuscript.

Funding
This study was supported by grants from the National Natural Science Foun-
dation of China (NSFC, No. 82170168 and No. 81960032) and the Translational 
Research Grant of NCRCH (2020ZKPB03 and 2021WWB01). Beijing Bethune 
Foundation Committee (No. B19153DT), Project of Science and Technology 
Foundation of Guizhou Provincial Health Commission (No. Gzwjkj2019-2-011) 
and National Natural Science Foundation General Fund Cultivation Project of 
Affiliated Hospital of Guizhou Medical University (No. Gyfynsfc-2021-3).

Availability of data and materials
Some data underlying this article are available in NCBI-GEO (http:// www. 
ncbi. nlm. nih. gov/ geo). The datasets were derived from sources in the public 
domain: GSE39754: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE39 754; GSE6477:  https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE64 77; GSE24080: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE24 080. Others are incorporated into the article and its online supplemen-
tary material. The data underlying this article are available in the article and in 
its online supplementary material.

Declarations

Ethics approval and consent to participate
The ethical committee of Guizhou Medical University approved our protocols. 
In accordance with the Helsinki Declaration, the informed consent was first 
obtained in writing. All patients volunteered to participate in this experiment. 
All patient information has been kept confidential.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interest.

Received: 25 November 2023   Accepted: 14 March 2024

References
 1. Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratifica-

tion, and management. Am J Hematol. 2022;97:1086–107. https:// doi. 
org/ 10. 1002/ ajh. 26590.

 2. Cowan AJ, et al. Diagnosis and management of multiple myeloma: a 
review. JAMA. 2022;327:464–77. https:// doi. org/ 10. 1001/ jama. 2022. 0003.

 3. Soliman AM, et al. Next-generation biomarkers in multiple myeloma: 
understanding the molecular basis for potential use in diagnosis and 
prognosis. Int J Mol Sci. 2021;22:7470. https:// doi. org/ 10. 3390/ ijms2 21474 
70.

 4. Gilchrist A, et al. Targeting chemokine receptor CCR1 as a potential thera-
peutic approach for multiple myeloma. Front Endocrinol (Lausanne). 
2022;13: 846310. https:// doi. org/ 10. 3389/ fendo. 2022. 846310.

 5. Hamerman JA, et al. The expanding roles of ITAM adapters FcRγ and 
DAP12 in myeloid cells. Immunol Rev. 2009;232:42–58. https:// doi. org/ 10. 
1111/j. 1600- 065X. 2009. 00841.x.

 6. Haure-mirande JV, et al. Microglial TYROBP/DAP12 in Alzheimer’s disease: 
transduction of physiological and pathological signals across TREM. Mol 
Neurodegener. 2022;17:55. https:// doi. org/ 10. 1186/ s13024- 022- 00552-w.

 7. Turnbull IR, et al. DAP12 (KARAP) amplifies inflammation and increases 
mortality from endotoxemia and septic peritonitis. J Exp Med. 
2005;202:363–9. https:// doi. org/ 10. 1084/ jem. 20050 986.

 8. Kiely M, et al. Immune response and inflammation in cancer health 
disparities. Trends Cancer. 2022;8:316–27. https:// doi. org/ 10. 1016/j. trecan. 
2021. 11. 010.

 9. Maiorino L, et al. Innate immunity and cancer pathophysiology. Annu 
Rev Pathol. 2022;17:425–57. https:// doi. org/ 10. 1146/ annur ev- pathm 
echdis- 032221- 115501.

 10. Carrasco K, et al. TREM-1 multimerization is essential for its activation on 
monocytes and neutrophils. Cell Mol Immunol. 2019;16:460–72. https:// 
doi. org/ 10. 1038/ s41423- 018- 0003-5.

 11. Takamiya R, et al. The interaction between Siglec-15 and tumor-associ-
ated sialyl-Tn antigen enhances TGF-β secretion from monocytes/mac-
rophages through the DAP12-Syk pathway. Glycobiology. 2013;23:178–
87. https:// doi. org/ 10. 1093/ glycob/ cws139.

 12. Yue X, et al. Polymeric immunoglobulin receptor promotes tumor growth 
in hepatocellular carcinoma. Hepatology. 2017;65:1948–62. https:// doi. 
org/ 10. 1002/ hep. 29036.

 13. Jiang J, et al. Identification of TYROBP and C1QB as two novel key genes 
with prognostic value in gastric cancer by network analysis. Front Oncol. 
2020;10:1765. https:// doi. org/ 10. 3389/ fonc. 2020. 01765.

 14. Li F, et al. Bioinformatics analysis and verification of gene targets for renal 
clear cell carcinoma. Comput Biol Chem. 2021;92: 107453. https:// doi. 
org/ 10. 1016/j. compb iolch em. 2021. 107453.

 15. Lu J, et al. Elevated TYROBP expression predicts poor prognosis and high 
tumor immune infiltration in patients with low-grade gliom. BMC Cancer. 
2021;21:723. https:// doi. org/ 10. 1186/ s12885- 021- 08456-6.

 16. Guo L, et al. MMP9 and TYROBP affect the survival of circulating tumor 
cells in clear cell renal cell carcinoma by adapting to tumor immune 
microenvironment. Sci Rep. 2023;13:6982. https:// doi. org/ 10. 1038/ 
s41598- 023- 34317-2.

 17. Li J, et al. The role of SPI1-TYROBP-FCER1G network in oncogenesis and 
prognosis of osteosarcoma, and its association with immune infiltration. 
BMC Cancer. 2022;22:108. https:// doi. org/ 10. 1186/ s12885- 022- 09216-w.

 18. Wei ZQ, et al. TYROBP-positive endothelial cell-derived TWEAK as a pro-
moter of osteosarcoma progression: insights from single-cell omics. Front 
Oncol. 2023;13:1200203. https:// doi. org/ 10. 3389/ fonc. 2023. 12002 03.

 19. Shabo I, et al. Breast cancer expression of DAP12 is associated with 
skeletal and liver metastases and poor survival. Clin Breast Cancer. 
2013;13:371–7. https:// doi. org/ 10. 1016/j. clbc. 2013. 05. 003.

 20. Fraz MA, et al. Special considerations for the treatment of multiple 
myeloma according to advanced age, comorbidities, frailty and organ 
dysfunction. Crit Rev Oncol Hematol. 2019;137:18–26. https:// doi. org/ 10. 
1016/j. critr evonc. 2019. 02. 011.

 21. Robak P, et al. Drug resistance in multiple myeloma. Cancer Treat Rev. 
2018;70:199–208. https:// doi. org/ 10. 1016/j. ctrv. 2018. 09. 001.

 22. Roussos ET, et al. Chemotaxis in cancer. Nat Rev Cancer. 2011;11:573–87. 
https:// doi. org/ 10. 1038/ nrc30 78.

 23. Muramatsu T, et al. Glycosaminoglycan-binding cytokines as tumor mark-
ers. Proteomics. 2008;8:3350–9. https:// doi. org/ 10. 1002/ pmic. 20080 0042.

 24. Wieboldt R, et al. Glycosaminoglycans in cancer therapy. Am J Physiol Cell 
Physiol. 2022;322:C1187–200. https:// doi. org/ 10. 1152/ ajpce ll. 00063. 2022.

 25. Afratis N, et al. Glycosaminoglycans: key players in cancer cell biology and 
treatment: GAG targeting in cancer cell biology. FEBS J. 2012;279(7):1177–
97. https:// doi. org/ 10. 1111/j. 1742- 4658. 2012. 08529.x.

 26. Wang N, et al. LPS promote osteosarcoma invasion and migration 
through TLR4/HOTAIR. Gene. 2019;680:1–8. https:// doi. org/ 10. 1016/j. 
gene. 2018. 09. 031.

https://doi.org/10.1186/s12935-024-03304-6
https://doi.org/10.1186/s12935-024-03304-6
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39754
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39754
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6477
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6477
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
https://doi.org/10.1002/ajh.26590
https://doi.org/10.1002/ajh.26590
https://doi.org/10.1001/jama.2022.0003
https://doi.org/10.3390/ijms22147470
https://doi.org/10.3390/ijms22147470
https://doi.org/10.3389/fendo.2022.846310
https://doi.org/10.1111/j.1600-065X.2009.00841.x
https://doi.org/10.1111/j.1600-065X.2009.00841.x
https://doi.org/10.1186/s13024-022-00552-w
https://doi.org/10.1084/jem.20050986
https://doi.org/10.1016/j.trecan.2021.11.010
https://doi.org/10.1016/j.trecan.2021.11.010
https://doi.org/10.1146/annurev-pathmechdis-032221-115501
https://doi.org/10.1146/annurev-pathmechdis-032221-115501
https://doi.org/10.1038/s41423-018-0003-5
https://doi.org/10.1038/s41423-018-0003-5
https://doi.org/10.1093/glycob/cws139
https://doi.org/10.1002/hep.29036
https://doi.org/10.1002/hep.29036
https://doi.org/10.3389/fonc.2020.01765
https://doi.org/10.1016/j.compbiolchem.2021.107453
https://doi.org/10.1016/j.compbiolchem.2021.107453
https://doi.org/10.1186/s12885-021-08456-6
https://doi.org/10.1038/s41598-023-34317-2
https://doi.org/10.1038/s41598-023-34317-2
https://doi.org/10.1186/s12885-022-09216-w
https://doi.org/10.3389/fonc.2023.1200203
https://doi.org/10.1016/j.clbc.2013.05.003
https://doi.org/10.1016/j.critrevonc.2019.02.011
https://doi.org/10.1016/j.critrevonc.2019.02.011
https://doi.org/10.1016/j.ctrv.2018.09.001
https://doi.org/10.1038/nrc3078
https://doi.org/10.1002/pmic.200800042
https://doi.org/10.1152/ajpcell.00063.2022
https://doi.org/10.1111/j.1742-4658.2012.08529.x
https://doi.org/10.1016/j.gene.2018.09.031
https://doi.org/10.1016/j.gene.2018.09.031


Page 14 of 14Luo et al. Cancer Cell International          (2024) 24:117 

 27. Cristinziano L, et al. Neutrophil extracellular traps in cancer. Semin Cancer 
Biol. 2022;79:91–104. https:// doi. org/ 10. 1016/j. semca ncer. 2021. 07. 011.

 28. Audrain M, et al. Reactive or transgenic increase in microglial TYROBP 
reveals a TREM2-independent TYROBP–APOE link in wild-type and 
Alzheimer’s-related mice. Alzheimers Dement. 2021;17:149–63. https:// 
doi. org/ 10. 1002/ alz. 12256.

 29. Spahn JH, et al. DAP12 expression in lung macrophages mediates 
ischemia/reperfusion injury by promoting neutrophil extravasation. J 
Immunol. 2015;194:4039–48. https:// doi. org/ 10. 4049/ jimmu nol. 14014 15.

 30. Zhang YF, et al. CXCR4 and TYROBP mediate the development of atrial 
fibrillation via inflammation. J Cell Mol Med. 2022;26:3557–67. https:// doi. 
org/ 10. 1111/ jcmm. 17405.

 31. Kobayashi M, et al. TREM2/DAP12 signal elicits proinflammatory 
response in microglia and exacerbates neuropathic pain. J Neurosci. 
2016;36:11138–50. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1238- 16. 2016.

 32. Lee JW, et al. Two macrophages, osteoclasts and microglia: from devel-
opment to pleiotropy. Bone Res. 2021;9:11. https:// doi. org/ 10. 1038/ 
s41413- 020- 00134-w.

 33. He Y, et al. Targeting PI3K/Akt signal transduction for cancer therapy. 
Signal Transduct Target Ther. 2021;6:425. https:// doi. org/ 10. 1038/ 
s41392- 021- 00828-5.

 34. Ullah R, et al. RAF-MEK-ERK pathway in cancer evolution and treatment. 
Semin Cancer Biol. 2022;85:123–54. https:// doi. org/ 10. 1016/j. semca ncer. 
2021. 05. 010.

 35. Chen SN, et al. E2F2 modulates cell adhesion through the transcriptional 
regulation of PECAM1 in multiple myeloma. Br J Haematol. 2023;202:840. 
https:// doi. org/ 10. 1111/ bjh. 18958.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.semcancer.2021.07.011
https://doi.org/10.1002/alz.12256
https://doi.org/10.1002/alz.12256
https://doi.org/10.4049/jimmunol.1401415
https://doi.org/10.1111/jcmm.17405
https://doi.org/10.1111/jcmm.17405
https://doi.org/10.1523/JNEUROSCI.1238-16.2016
https://doi.org/10.1038/s41413-020-00134-w
https://doi.org/10.1038/s41413-020-00134-w
https://doi.org/10.1038/s41392-021-00828-5
https://doi.org/10.1038/s41392-021-00828-5
https://doi.org/10.1016/j.semcancer.2021.05.010
https://doi.org/10.1016/j.semcancer.2021.05.010
https://doi.org/10.1111/bjh.18958

	Low TYROBP expression predicts poor prognosis in multiple myeloma
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Microarray data
	DEGs identification and weighted gene co-expression network analysis (WGCNA)
	DEGs related to MM and functional enrichment analysis
	Establishment of PPI network and identification of hub gene
	Receiver operating characteristic (ROC) curve and Kaplan–Meier (KM) survival curve
	GSEA functional enrichment analysis
	Patient samples collection and ethics consent
	Cell lines and cell transfection
	Western-Blotting assay
	RT-PCR
	Cell adhesion
	Transwell migration assay
	Data analysis

	Results
	Identification of DEGs and susceptibility modules
	Functional annotation of MM-related DEGs and identification of hub genes
	Diagnostic significance and survival analyses of hub genes
	Independent prognostic significance of hub genes and GSEA
	Survival analysis of high- and low-TYROBP-expression groups under different clinical characteristics
	TYROBP was down-regulated in MM and TYROBP up-regulation promoted the adhesion of MM and decreased its migration

	Discussion
	Conclusion
	Acknowledgements
	References


