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Abstract

Background: Mirk/Dyrk1B contributes to GO arrest by destabilization of cyclin D1 and stabilization of p27kip1 to
maintain the viability of quiescent human cancer cells, and it could be negatively regulated by mitogenic-activated
protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. This study was performed to investigate
the effect of Mirk/Dyrk1B on cell cycle and survival of human cancer cells involving MAPK/ERK signaling.

Methods: The correlations between Mirk/Dyrk1B expression and active ERK1/2 detected by western blot in both
ovarian cancer and non-small cell lung cancer (NSCLC) cells were analyzed by simple regression. Mirk/Dyrk1B
unique phosphopeptides with sites associated with Mirk/Dyrk1B protein were isolated and quantitated by liquid
chromatography coupled to tandem mass/mass spectrometry (LC-MS/MS) proteomics analysis. The human cancer
cells were treated with small interfering RNAs (siRNAs) and/or U0126, an inhibitor of MEK for indicated duration,
followed by investigating the alterations of cell cycle and apoptosis as well as related proteins examined by flow
cytometry and Western blot, respectively.

Results: Our study demonstrated the widely expressed Mirk/Dyrk1B proteins in the human cancer cells were
positively correlated with the levels of activated ERK1/2. Moreover, Mirk/Dyrk1B protein expressions consistent with
the tyrosine autophosphorylated levels in the human cancer cells were increased by U0126 or growth factor-depleted
culture. Conversely, knockdown of Mirk/Dyrk1B by siRNA led to up-regulated activation of c-Raf-MEK-ERK1/2 pathway
and subsequent changes in cell cycle proteins (cyclin D1, p27kip1), accompanied by increased growth rate and cells
from GO/G1 into S of cell cycle which could be blocked by U0126 in a dose-dependent manner, indicating Mirk/Dyrk1B
may sequester MAPK/ERK pathway, and vice versa. Whereas, combined Mirk siRNA and U0126 induced cell apoptosis
in the human cancer cells.

Conclusions: These data together show that Mirk/Dyrk1B mediates cell cycle and survival via interacting with MAPK/ERK
signals and simultaneous inhibition of both pathways may be a novel therapeutic target for human cancer.
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Background

The serine/threonine kinase, Mirk/Dyrkl1B is expressed
in few normal tissues, but in skeletal muscle and many
types of human cancers [1]. Mirk/Dyrk1B has the ability
to auto-phosphorylate on tyrosine activating itself and
then phosphorylate other substrates on serine and threo-
nine; therefore, it has been categorized as a dual func-
tion kinase. One role of Mirk/Dyrk1B in skeletal muscle
differentiation after a stress signal of serum deprivation
is to block cycling myoblasts in the GO quiescent state
[2] by phosphorylation of the cell cycle regulators cyclin
D1 and CDK inhibitor p27kip1 [3,4]. Specificially, phos-
phorylation by Mirk/Dyrkl1B at a conserved ubiquitina-
tion site Thr288 initiates proteolysis of cyclin D1, while
p27kipl was stabilized following phosphorylation by
Mirk/Dyrk1B at Ser10. As normal cells in quiescence ac-
tivate pathways that protect them from metabolic stress,
the subpopulation of tumor cells is likely to utilize
similar pathways to survive within the tumor micro-
environment. Recently, it has been reported that Mirk/
Dyrk1B functions independently and additively to regu-
late the exit of cancer cells from quiescence through
regulating cyclin D turnover and p27kipl stabilization in
colon, pancreatic and ovarian cancer cells shown by
Mirk-depletion studies [5-7]. As a result, the quiescent
cancer cells depleted of Mirk/Dyrkl1B out of GO entering
into the cell cycle may enhance cancer cell kill by che-
motherapeutic drugs or radiation, while having less ef-
fect on normal tissues in which Mirk/Dyrk1B levels are
quite low.

Currently, ovarian cancer and NSCLC are among the
leading causes of cancer-related mortality in the world
[8]. The presence of drug-resistant, higher proportion of
quiescent cancer cells with high clonogenic capacity and
tumorigenicity is known to increase recurrence of
human cancer and decrease patient survival. Our recent
studies have found Mirk/DyrklB is overexpressed in a
wide spectrum of cell lines and tumor specimens of
ovarian and lung cancers [9,10]. Furthermore, knock-
down Mirk/DyrklB by small interfering RNA (siRNA)
induced cell apoptosis and increased sensitivity of
human cancer cells to conventional chemotherapeutics
in vitro [9-12]. More recently, Mirk/DyrklB has been
found to contribute GO arrest and maintain viability of
the quiescent cancer cells via mediating cyclin D1 and
p27kipl which is associated with reduction of reactive
oxygen species (ROS) [5,13], therefore, we hypothesize
that Mirk/DyrklB pathway may be a novel target for
overcoming the drug-resistance and recurrence of vari-
ous human cancers.

As well as Mirk/DyrklB regulating cell cycle-related
proteins cyclin D1 and p27kipl, it has been demon-
strated that blocking mitogenic-activated protein kinase
kinae (MEK) - extracellular signal-regulated kinase
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(ERK) signaling pathway increases Mirk abundance by
up-regulating Mirk/Dyrk1B transcription in either myo-
blast or colon cancer cells [2], suggesting the possi-
ble involvement of mitogenic-activated protein kinase
(MAPK)/extracellular signal-regulated kinase (ERK) sig-
naling in Mirk/Dyrkl1B functions. However, to date, in-
sufficient data regarding the interaction between Mirk/
DyrklB and MAPK/ERK in human cancer cells are
available, and the mechanisms involved need to be elu-
cidated. In this study, we have identified that the
expressed Mirk/DyrklB in both ovarian cancer and
NSCLC cells is positively correlated with expression of
activated ERK1/2. Mirk/Dyrk1B mediates GO/G1 to S of
cell cycle and cell survival involving MAPK/ERK path-
way in the human cancer cells. It may be a novel target
via inhibiting both Mirk/DryklB and MAPK/ERK signals
for the treatment of human cancer.

Materials and methods

Antibodies

The rabbit polyclonal Mirk/Dyrkl1B antibody (C-term,
AP7538b) was purchased from Abgent (San Diego, CA,
USA). Anti-p27kipl, anti-cyclin D1, anti-ERK1/2, and
goat anti-mouse IgG horseradish peroxidase (HRP)-con-
jugated secondary antibody were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Anti-poly
(ADP-ribose) polymerase (PARP) and anti-phosphoty-
rosine (pY) purchased from Cell Signaling Technology
(Danvers, MA, USA). Anti-C-Raf and -phosphorylated
C-Raf (P-C-Raf), anti-phosphorylated ERK1/2 Threonine
202/Tyrosine 204 (P-ERK1/2) were purchased from BD
Biosciences PharMingen (San Diego, CA, USA). Anti-
B-actin and donkey anti-rabbit IgG HRP-conjugated sec-
ondary antibody were purchased from Sigma (St. Louis,
MO, USA) and Amersham Biosciences (Piscataway, NJ,
USA), respectively.

Cell lines and cell culture

Human ovarian cancer cell lines used were OV2008,
OVCAR3, OVCARS5, SKOV3, MDAH2774, OVCARI10,
OV1063, and OVCARS8. Of eight cell lines, SKOV3
and OVCAR3 were purchased from American Type
Culture Collection (Manassas, VA, USA); others and
all NSCLC cell lines used in this study, such as
HCC827, PC-9, H1975, H292, H358, H441, A549, and
H1299 were gifts from H. Lee Moffitt Cancer Center
and Research Institute, USA. All lines were main-
tained in DMEM supplemented with 10% heat-inactivated
(56°C, 30 minutes) fetal bovine serum (FBS; Invitrogen,
Grand Island, NY, USA). Monolayer cultures were incu-
bated at 37°C in a 95% humidified atmosphere air contain-
ing 5% COz.
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Small interfering RNA treatment

Cells were reverse transfected with small interfering
RNAs (siRNAs) using lipofectamine 2000 transfection
reagent (Invitrogen) according to the manufacturer’s
instructions. The Mirk/DyrklB siRNA duplexes as
well as the corresponding nonspecific control siRNA
duplexes as described [10] were supplied by Dharmacon
(Pittsburgh, PA, USA). For combined treatment, cells
were pretreated with U0126, an inhibitor of MEK
purchased from CalBiochem-NovaBiochem Corporation
(La Jolla, CA, USA) at dose escalation for 1 h followed
by combination with a constant 20nM dose of siRNAs.
Through indicated duration of each treatment, cells
treated were harvested and saved for the following
experiments.

Cell proliferation assay

Cells were plated in 96-well plates, and siRNA transfec-
tion was performed for 72 hours as described above.
Cellular proliferation was measured by [3-(4,5)-dimethy-
Ithiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT)
analysis [14]. Briefly, after cells were washed with PBS,
they were incubated in MTT solution for 4 hours and
then supplemented with 100 pl of dissolving solution
(10% SDS in 0.01 M HCI). The absorbance (optical dens-
ity units) was measured with a microplate spectropho-
tometer (Bio-Rad Laboratories, Hercules, CA, USA)
with Microplate Manager 5.1 software at wavelengths of
590 nm and 660 nm. Each assay was performed in
quadruplicate.

Flow cytometry analysis

After 72-hour treatment with siRNAs, cells were subjected
to flow cytometry analyses of apoptosis. Apoptosis was
assayed using Pharmingen PE-conjugated monoclonal
active caspase-3 antibody apoptosis kit without modifica-
tion as described previously [10]. We determined the per-
centage of cells in G;, S, and G,/M by propidium iodide
staining as described previously [15]. A total of 10,000
cells per experimental condition were used for processing
and analysis of fluorescence on Becton-Dickinson FACS-
can (BD, Franklin Lakes, NJ, USA) using CellQuest
software.

Western blot analysis

Cells were washed twice with cold PBS and lysed with
buffer A [10 mM Tris—HCI (pH 7.4), 1% Triton X-100,
0.1% SDS, 150 mM NaCl, 1 mM EDTA, 1 mM dithio-
threitol, 0.5 mM phenylmethylsulfonyl fluoride, 10 pug/ml
leupeptin, 5 pg/ml aprotinin]. After incubation for 30 min-
utes on ice, the suspensions were centrifuged (15,000 g for
30 minutes). The supernatants were removed and stored
at —80°C until analysis using gel electrophoresis. The pro-
tein concentration was determined by Bio-Rad protein
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estimation assay according to the manufacturer’s instruc-
tions. For Western blot analysis, ~60-100 pg of whole cell
proteins were separated using 10% or 12% SDS-PAGE and
transferred to nitrocellulose membranes. After blocking of
the membranes with 10 mM Tris—HCI (pH 7.4), 150 mM
NaCl, and 0.1% Tween 20 containing 5% nonfat dry milk
at room temperature for 60 minutes, the membranes were
incubated with indicated antibodies at 4°C overnight and
then with the HRP-conjugated secondary anti-rabbit or
anti-mouse antibodies at room temperature for 60 -
minutes. Each protein was detected using the enhanced
chemiluminescence (Amersham Biosciences, Piscataway,
NJ, USA) system. -actin was used as an internal control.

Immunoprecipitations were performed with 500 pg
of whole cell protein lysates, using Protein A-agarose
(Roche, Indianapolis, IN, USA). Briefly, equal amount
of protein lysates were incubated with Mirk/Dyrkl1B
antibody and normal rabbit IgG used as negative
control. After incubation for overnight at 4°C, the im-
mune complexes were precipitated with Protein A-
agarose. The immunoprecipitates were washed with
lysis buffer according to the manufacturer’s instruc-
tions, then separated by SDS-PAGE, and transferred
to nitrocellulose membranes followed by incubation
of pY or Mirk antibodies for western blot analysis as
described above.

Phosphopeptide immunoprecipation and analysis by
liquid chromatography coupled to tandem mass/mass
spectrometry (LC-MS/MS)

Phosphopeptide immunoprecipitation for eight NSCLC
cell lines: HCC827, PC9, H1975, H292, H358, H441,
A549, and H1299 was performed using phosphoscan kit
(P-Tyr-100, Cell Signaling) according to the manufac-
turer’s instructions. Using an immunoaffinity peptide
profiling technique, Mirk/Dyrk1B unique phosphopep-
tides with sites associated with Mirk/DyrklB protein
were isolated and quantitated by LC-MS/MS proteomics
analysis as described previously [16]. Results were sub-
jected to sequest-IPI database searching according to cri-
teria specified by molecular and cellular proteomics/cell
signaling technology (MCP/CST). Duplicate samples for
each cell line each with two technical runs were then
filtered according to a 80% peptide identification prob-
ability and a 50% protein identification probability.

Statistical analysis

Each experiment was repeated three times. Data are pre-
sented as mean + SD. Statview 5.0 software was used for
statistical analyses. Statistical comparison among the
groups was performed using one-way analysis of vari-
ance (ANOVA), followed by the Fisher least significant
difference test. The correlations between Mirk/DyrklB
expression and active ERK1/2 were analyzed by simple
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regression. Differences were considered to be statistically
significant when P was less than 0.05.

Results

Widely expressed Mirk/Dyrk1B in the human cancer cells
is positively correlated with activated ERK1/2

In this study, we first evaluated protein expression of
Mirk/Dyrkl1B in both ovarian cancer and NSCLC cell
lines. We observed all 16 cell lines were expressed Mirk/
DYRK1B protein (Figure 1A). Based on the hypothesis
described above that the MAPK/ERK may be involved in
Mirk/DyrklB function in human cancer, we further
examined the expression of both ERK1/2 and P-ERK1/2
in the 16 cell lines (Figure 1A). As shown in Figure 1B,
there appears to be positive correlation between the pro-
tein expressions of MirkDyrklB and P-ERK1/2 in all
lines (R2=0.785 and P < 0.001), suggesting the activated
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ERK1/2 may be associated with Mirk/DyrklB function
or kinase activity.

Enrichment of autophosphorylated Mirk/Drk1B consistent
with the protein expression may be mediated by
activated ERK1/2

As part of a phosphoproteomics screen in human cancer
cells, we identified peptides corresponding to the pY
autophosphorylation site of Mirk/DyrklB in NSCLC
cells. Figure 2A shown were averaged pY spectral counts
across 8 cell lines, of which higher level of pY peptide of
Mirk/DyrklB were enriched in H1299 cells compared
with that in the other cell lines. To further confirm the
identified peptides, cell protein extracts out of H292,
H358, A549 or H1299 were immunoprecipitated with
Mirk/Dyrkl1B antibody, and immunobloted by pY and
Mirk/Dyrk1B antibodies. The corresponding Mirk/
DyrklB pY bands were found in all of four lines
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Figure 1 Widely expressed Mirk/Dyrk1B in the human cancer cells is positively correlated with activated ERK1/2. (A), preotein
expressions of Mirk (69 and 71 Kda), ERK1/2 and P-ERK1/2 (42/44 kDa) in ovarian cancer and NSCLC cells were measured by western blot
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analyses, with equal loading and transfer shown by repeat probing with B-actin (42 kDa). (B), the correlation between the protein expressions of
Mirk and P-ERK1/2 was analyzed by simple regression. Units, intensity/mm?. NSCLC, non-small cell lung cancer; ERK, extracellular signal-requlated
kinase.
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Figure 2 Enrichment of autophosphorylated Mirk/Dyrk1B consistent with the protein expression may be mediated by activated ERK1/
2. (A), the averaged spectral counts corresponding to the phosphotyrosine (pY) autophosphorylation site of Mirk/Dyrk1B in NSCLC cells were
analyzed by LC-MS/MS proteomics. (B), the pY bands of Mirk/Dyrk1B were detected by Western blot analysis in four lines H292, H358, A549 and
H1299 after the cell protein extracts were immunoprecipitated with Mirk antibody and then immunobloted by pY monoclonal antibody. (C),
H292 cells treated with/without U0126 (10 uM) for 48 h or 10% FBS for 24 h were collected and the protein expressions of Mirk (69 and 71 Kda),
ERK1/2 and P-ERK1/2 (42/44 kDa), as well as alterations of cyclin D1 (36 Kda) and p27kip1 (27 kDa) were analyzed by western blot. Equal loading
and transfer were shown by repeat probing with B-actin (42 kDa). NSCLC, non-small cell lung cancer; LC-MS/MS, liquid chromatography coupled
to tandem mass/mass spectrometry; ERK, extracellular signal-regulated kinase; FBS, fetal bovine serum; IP, immunoprecipitate; WB, western blot.
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(Figure 2B). As a control, there was no obvious band in
immunoprecipitates prepared with IgG (Figure 2B).
There seemed to be positive correlation between the
expression of Mirk/DyrklB protein and the phospho-
tyrosine abundance of Mirk/DyrklB in NSCLC cells
(Figure 1). Therefore, we hypothesize that Mirk/Dyrk1B
kinase may be activated via autophosporylation at its
phosphotyrosie site. Moreover, consistent with previous
report that Mirk/Dyrk1B could be negatively regulated
by inhibition of MEK-ERK signaling, in this study west-
ern blot analysis also showed that treatment of H292
cells with U0126 for 48 h induced a dose-dependent
increase in Mirk/DyrklB protein levels (Figure 2C
and data not shown), and exposure of H292 cells to
0% FBS for 24 h resulted in up-regulation of Mirk
protein levels compared with that to 10% FBS, indi-
cating the increased Mirk possibly mediated by acti-
vated ERK1/2 to function cell growth and survival in
human cancer.

Mirk/Dyrk1B regulates progression from GO/G1 to S
phase of the cell cycle via MAPK/ERK signaling

As Mirk in skeletal muscle not only blocks cycling myo-
blasts in GO quiescent state for differentiation but also
limits apoptosis in fusing myoblasts, it may regulate cell

cycle and survival through the similar mechanisms in
human cancer. To investigate the effects and mechan-
isms of Mirk involving MAPK/ERK pathway in human
cancer cells, the upstream or downstream signals of
ERK1/2 were first determined in a representative panel
of H292 and OVCARS3 cells treated with 20 nM siRNA
duplexes, with Mirk siRNA #4 targeting Mirk for 72 h as
reported previously [10]. As shown in Figure 3A, expos-
ure of both cell lines to Mirk siRNA was associated with
knockdown of Mirk, up-regulation of P-C-Raf, P-ERK1/
2 as well as cyclin D1, and reduction of p27kipl, com-
pared with that shown with control siRNA. We next
investigated the effects of altered MAPK/ERK pathway
by Mirk knockdown on the human cancer cells, the
H292 or OVCARS3 cells treated with 20 nM siRNA for
72 h were collected, stained with propidium iodide, and
subjected to flow cytometry analysis. Knockdown Mirk
by siRNA resulted in S phase accumulation of cells ac-
companied by decreased cell number of G1/GO phase in
H292 or OVCAR3 (Figure 3B and data not shown).
Consequently, Mirk siRNA treatment increased growth
rate of the human cancer cells which could be blocked
by U0126 (Figure 3C and data not shown), suggesting
knockdown Mirk-induced cell cycle alteration may be
involving MAPK/ERK pathway.
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Figure 3 Mirk regulates GO/G1 to S phase cell cycle via MAPK/ERK signaling. To investigate this possibility that Mirk expression is associated
with activated ERK1/2, the human cancer cells treated with 20 nM siRNAs alone or in combination with a range of concentrations of U0126 for
72 h were collected, and followed by (A) the protein expressions of Mirk (69 and 71 Kda), ERK1/2 and P-ERK1/2 (42/44 kDa), C-Raf and P-C-Raf
(74 kDa), as well as alterations of cyclin D1 (36 Kda) and p27kip1 (27 kDa) in H292 or OVCAR3 cells were measured by western blot analyses.
Equal loading and transfer were shown by repeat probing with 3-actin (42 kDa); (B) H292 cells stained with propidium iodide were subjected to
flow cytometry analysis; and (C) H292 growth rate was measured by MTT assay. *, P < 0.05; **, P < 0.01 compared with control. SiRNA, small
interfering RNA; MAPK, mitogenic-activated protein kinase; ERK, extracellular signal-regulated kinase. Ctrl, no siRNA; Ctrl si, control siRNA; Mirk si,

90
% 80 . — Culsi
H —‘—I = Mirk si
= 70 [ W
= 60 —
-l
5 50 —
W40
= "
£ 30 [
T
& 10 —
= 0

Gl/ GO % 5% G2/M %

Mirk modulates cell survival associated with activation of
MAPK/ERK

To further determine the effects of MAPK/ERK pathway
involved in Mirk modulating cancer cell survival, the
H292 cells were treated with 20 nM siRNAs with/with-
out U0126 in gradient for 72 h followed by western blot
and flow cytometry analyses, respevtively. As shown in
Figure 4A, U0126 blocked knockdown Mirk-induced
ERK1/2 activation, as well as alteration of downstream
signals p27kipl and cyclin D1 in H292 cells. Interest-
ingly, Mirk siRNA combined with U0126 led to in-
creased cell apoptosis evidenced by PARP cleavage
(Figure 4A) and positive cells with active caspase-3
(Figure 4B). Taken together, these results suggest that
MAPK/ERK may be a novel pathway with which Mirk
interacts to serves as an antiapoptotic factor in the
human cancer cells.

Discussion

Mirk/DyrklB is a member of a conserved family of
serine/threonine kinases that are actived by intramolecu-
lar tyrosine phosphorylation which mediate maturation
in defferent tissues: Mirk in skeletal muscle, Dyrk1lA in
brain, etc. [1]. Previous studies show that Dyrk1A activ-
ity was increased by binding to 14-3-3 protein [17], and
is mediated by autophosphorylation at a C-terminal
serine [18], which is not conserved in Mirk. The possible
YxY activation domain of Mirk within the conserved
kinase region has been known to be intramolecularly
phosphorylated only during translation, and the mature
members of Mirk family have only serine/threonine
kinase activity [19]. Whereas, in this study we uti-
lized a phosphoproteomics screen to identify pepti-
des corresponding to the tyrosine autophosphorylation
site of Mirk/DyrklB in the human cancer cells and
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demonstrated a positive correlation between the expres-
sion of Mirk protein and the phosphotyrosine abun-
dance of Mirk/DyrklB. This suggests that activation of
Mirk/Dyrk1B kinase in the deregulated cancer cells may
be mediated by tyrosine autophosphorylation, although
further study is required.

Mirk/Dyrk1B is also an arginine-directed serine/threo-
nine kinase which has limited expression in normal
tissue with highest expression seen in skeletal muscle,
heart, tests, and brain. Initially, most of the studies of
Mirk/Dyrk1B have been conducted using myogenesis
as a model system. It has been known that Mirk/
DyrklB functions as a transcription factor activator in
muscle differentiation. In cultured myoblasts, mitogen
deprivation increased Mirk/DyrklB protein levels pre-
dominantly via transcriptional mechanisms regulated by
RhoA and Cdc42, and to a lesser extent by Racl [2].
Inhibition of MAPK/ERK activity by removal of serum
mitogen [20] or by addition of the MEK inhibitor
increased endogenous Mirk/DyrklB protein levels and
its promoter construct [2], suggesting Mirk/Dyrk1B in-
duction in muscle differentiation requires not only active
Rho proteins but also inhibition of the MAPK/ERK sig-
naling pathway. Consistently, the colon cancer cells has
been found to utilize similar pathway as myoblasts
through which MEK inhibition activates Mirk/Dyrk1B
promoter constructs and increases Mirk/DyrklB tran-
scription [2]. In this study, we also found Mirk/Dyrk1B
could be up-regulated by serum depleted culture or
U0126 treatment in both ovarian cancer and NSCLC
cells. Therefore, Our study along with others [2,21] sug-
gests that MAPK/ERK signaling may inhibit Mirk/
DyrklB transcription and functions in human cancer
cells. In addition, our results in the study demonstrate

that the widely expressed Mirk/DyrklB in both ovarian
cancer and NSCLC cells largely correlates the activated
ERK1/2. Moreover, we have also found Mirk/DyrklB
protein levels were increased by inhibition of MEK-
ERK1/2, and knockdown of Mirk/DyrklB resulted in
up-regulation of activated ERK1/2 as well as up/down-
stream signals. All together indicate the possible inter-
action between Mirk/Dyrkl1B and MAPK/ERK signals in
human cancer cells. Namely, Mirk/Dyrk1B may seques-
ter MAPK/ERK, and vice versa in either myogenesis or
cancer.

In the past decade, growing evidence has demon-
strated that knockdown Mirk/DyrklB could induce cell
apoptosis and increase sensitivity of various human can-
cer cells to conventional chemotherapeutics. Further-
more, the study in osteosarcoma demonstrates that the
overall survival rate of patients is negatively correlated
with the levels of Mirk/DyrklB protein expression [12].
Our previous studies have also shown Mirk/DyrklB
function in an NSCLC orthotopic mouse model [10],
and the involvement of FoxO1/3A in the Mirk-mediated
ovarian cancer cell survival [9]. Recently, studies have
focused on the effect of Mirk/Dyrk1B on various human
cancer cells arrested in a reversible quiescent state
(G0-G1) to undergo DNA repair or survive suboptimal
growth conditions [6,7,13]. Moreover, Mirk/DyrklB,
through regulating cyclin D turnover and p27 stabilization,
functions independently and additively to regulate the exit
of cancer cells from quiescence GO or early G1 into S and
G2/M of cell cycle [6]. Although it has been reported that
Mirk could be negatively regulated by MAPK/ERK in
colon cancer, our study is the first to show the possible
interaction between Mirk/DyrklB and MAPK/ERK signals
or sequestering with each other in both ovarian cancer and
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NSCLC cells. In this study, knockdown of Mirk/Dyrk1B by
siRNA in either ovarian cancer cells or NSCLC cells led to
up-regulated activation of c-Raf-MEK-ERK1/2 pathway, ac-
companied by increased growth rate and cells from G0/G1
into S of cell cycle which could be blocked by U0126 in a
dose-dependent manner. Furthermore, combined Mirk
siRNA and U0126 induced cell apoptosis in the human
cancer cells. All of above suggest that Mirk/DyrklB may
mediate cell cycle and cell survival through interacting with
MAPK/ERK pathway in human cancer.

Taken together, the widely expressed Mirk/DyrklB in
the human cancer cells is positively correlated with the
levels of activated ERK1/2. Mirk/Dyrk1B mediates GO/G1
to S of cell cycle and cell survival in both ovarian cancer
and NSCLC cells may be associated with MAPK/ERK
signaling. Therefore, simultaneous inhibition of Mirk/
Dyrk1B and MAPK/ERK may be a novel target for treat-
ment of human cancer.

Abbreviation
ERK: In Mirk-mediated cancer cell cycle and survival.
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