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MiR–20a‑5p promotes radio‑resistance 
by targeting Rab27B in nasopharyngeal cancer 
cells
Dabing Huang1,2,3, Geng Bian2, Yueyin Pan3, Xinghua Han3, Yubei Sun3, Yong Wang3, Guodong Shen4, 
Min Cheng4, Xiang Fang2 and Shilian Hu1,2,4*

Abstract 

Background:  MicroRNAs (miRNAs) was reported to be involved in cancer radio-resistance, which remains a major 
obstacle for effective cancer therapy.

Methods:  The differently expressed miRNAs were detected by RNA-seq experiment in nasopharyngeal cancer (NPC) 
cells. MiR-20a-5p was selected as our target, which was subject to finding its target gene Rab27B via bioinformat-
ics analysis. The qRT-PCR, western blot and the luciferase reporter assays were performed to confirm Rab27B as the 
target of miR-20a-5p. In addition, the roles of miR-20a-5p in NPC radio-resistance were detected by transfection of 
either miR-20a-5p-mimic or miR-20a-5p-antagomiR. The involvement of Rab27B with NPC radio-resistance was also 
detected by the experiments with siRNA-mediated repression of Rab27B or over-expression of GFP-Rab27B. Wound 
healing and invasion assays were performed to detect the roles of both miR-20a-5p and Rab27B.

Results:  MiR-20a-5p promotes NPC radio-resistance. We identified that its target gene Rab27B negatively correlates 
with miR-20a-5p-mediated NPC radio-resistance by systematic studies of a radio-sensitive (CNE-2) and resistant (CNE-
1) NPC cell lines. Repression of Rab27B by siRNA suppresses cell apoptosis and passivates CNE-2 cells, whereas over-
expression of Rab27B triggered cell apoptosis and sensitizes CNE-1 cells.

Conclusions:  MiR-20a-5p and its target gene Rab27B might be involved in the NPC radio-resistance. Thus the key 
players and regulators involved in this pathway might be the potential targets for developing effective therapeutic 
strategies against NPC.
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Background
The malignant tumor nasopharyngeal carcinoma (NPC) 
occurs in the lining of nasopharynx with a multifacto-
rial etiology [1].  Beyond the chemotherapy [2], radia-
tion therapy is the other major methods against cancer 
due to its excellent local control and increased overall 
survival rates [3–5]. However, owing to the high sensitiv-
ity, radiation therapy often fails in various cancers, such 
as NPC. The main reason is that radiation treatment can 

intrinsically induce radio-resistant tumor cells, which 
show enhanced DNA repair ability [6]. To overcome the 
problem of radio-resistance, it is urgently needed to elu-
cidate the mechanisms of radio-resistance and develop 
new radiosensitizers.

MicroRNAs (miRNAs) are non–coding regulatory 
RNAs, post-transcriptionally regulate gene expres-
sion through targeting to a panel of target genes. As the 
critical roles reported [7], their dysregulation is asso-
ciated with human diseases, including  cancer biology 
[8, 9]. Notably, the emerging studies have shown that 
miRNAs are associated with the development of radio-
resistance in different type of cancers [10, 11], such as 
prostate cancer [12], esophageal cancer [13]. As one of 
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the well-studied miRNAs, miR-20a has been shown to 
function as an oncomiR in many cancers, including lung 
cancer [14], hepatocellular carcinoma [15], and gas-
tric cancer [16]. Notably, miR-20a was also found to be 
involved in cancer irradiation treatment [17]. For exam-
ple, miR-20a was shown to induce cell radio-resistance 
by activating the PTEN/PI3  K/Akt signaling pathway in 
hepatocellular carcinoma [18].

In the present study, we performed an RNA-seq assay 
to detect differentially expressed genes in radio-sensitive 
(CNE-2) versus radio-resistant (CNE-1) NPC cell lines. 
We showed that miR-20a-5p promoted NPC radio-resist-
ance via repression of Rab27B, a newly identified target 
of miR-20a-5p. We further performed a systematic analy-
sis of Rab27B and miR-20a-5p for their roles in the NPC 
radio-resistance. The regulatory effect of miR-20a-5p on 
NPC cell survival and apoptosis was also detected upon 
irradiation.

Methods
Cell lines
Human nasopharyngeal cancer cell lines, CNE-1 and 
CNE-2 were supplied by the department of radiation 
oncology of Sun Yat-sen University, Guangzhou, China 
[19]. Cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) (Gibco, USA) supplemented with 10% 
fetal bovine serum (Gibco, USA) in a humid atmosphere 
containing 5% CO2 at 37 °C.

RNA‑Seq analysis
RNA-seq analysis was performed by BGI-Tech (Shenz-
hen, China). RNA was purified and fragmented to con-
struct the RNA-seq library for sequencing. The sense and 
anti-sense cDNA molecules were synthesized. After aga-
rose gel electrophoresis, suitable fragments were used as 
templates for PCR amplification. Real-Time PCR System 
was used in quantification and qualification of the sample 
library. Finally, the library was subjected to sequencing 
using Illumina HiSeq  2000 (Illumina, USA). The single-
end library was prepared following the protocol of the 
IlluminaTruSeq RNA Sample Preparation Kit (Illumina) 
[20].

Cell reagents
The Homo sapien miR–20a-5p mimics, miR–20a-5p 
antagomiRs and miR–20a-5p scrambled nega-tive con-
trol (NC) were obtained from Guangzhou Ribobio, 
China. All the transfection experiments were performed 
using the Lipofectamine 2000 transfection reagent (Invit-
rogen Life Technologies), which was described previously 
[21]. Western blot and qRT–PCR assays were performed 
to confirm the effect of Rab27Bon the expression of miR–
20a-5p. The sequences used in this study are as follows:

si-Rab27B
5′- CAGUAGGAAUAGACUUUCG dTdT-3′
3′-dTdT GUCAUCCUUAUCUGAAAGC-5′;
hsa-miR-20a-5p
antagomiR: 5′-CUACCUGCACUAUAAGCACUUUA-3′
mimic:
sense 5′-UAAAGUGCUUAUAGUGCAGGUAG-3′
antisense 5′-CUACCUGCACUAUAAGCACUUUA-3′

Irradiation and clonogenic assay
Cells treated with miRNAs were seeded on 6-well plates 
in triplicate and exposed to radiation at the doses indi-
cated using a 6-MV x-ray generated by a linear accelera-
tor (Varian trilogy at a dose rate of 200 cGy/min). After 
incubation at 37 °C for 14 days, cells were fixed in 100% 
methanol and stained with 0.1% crystal violet. Colonies 
containing  >50 cells were counted under a light micro-
scope. The surviving fraction was calculated as described 
previously [13, 18]. At least three independent experi-
ments were performed to calculate the means and stand-
ard deviations.

RNA analysis
Total RNA was extracted using Trizol (Vazyme). For the 
mRNA analysis, the cDNA primed by oligo-dT was made 
with RT reagent kit (Tiangen, China), and the mRNA 
level of Rab27B was quantified by a duplex-qRT-PCR 
analysis where the TaqMan probes with a different fluo-
rescence for β-actin (Shing Gene, China) were used in 
the FTC-3000P PCR instrument (Funglyn, Canada). The 
miRNA expression level was normalized using U6 small 
nuclear RNA (HmiRQP9001) as an internal control, as 
previ-ously described [22]. Using the 2−ΔΔCt method, the 
β-actin level was normalized before comparing the rela-
tive level of the target genes. The sequences of primers 
and probes used for the qRT-PCR analysis are as follows:

hRab27BF, 5′-GGGACACTGCGGGACAAG-3′;
hRab27BR, 5′-CAGTTGGCTCATCCAGTTTCTG-3′;
hRab27B probe, 5′-ROX-CGGTTCCGGAGTCTCACC 

ACTGC-3′;
hACTB F: 5′-GCCCATCTACGAGGGGTATG-3′
hACTB R: 5′-GAGGTAGTCAGTCAGGTCCCG-3′
hACTB probe: 5′-CY5-CCCCCATGCCATCCTG 

CGTC-3′

Western blotting assays
Total proteins were extracted from cultured cells with 
cell lysis buffer (60 mM Tris–HCl, pH 6.8, 2% SDS, 20% 
glycerol, 0.25% bromophenol blue, and 1.25% 2-mercap-
toethanol) and heated at 95  °C for 10  min. The heated 
proteins were separated by 10% SDS-PAGE gel and trans-
ferred to polyvinylidene difluoride (PVDF) membranes. 
After blocking with 5% non-fat milk in TBST for 2  h, 



Page 3 of 11Huang et al. Cancer Cell Int  (2017) 17:32 

the membranes were incubated overnight at 4  °C with 
diluted Anti-Rab27B primary antibody (13412-1-AP; 
SanYing, China). Followed by washing with TBST buffer 
three times, the membranes were incubated with second-
ary antibody (SA00001-2; SanYing, China) at 37 °C while 
shaking on a rotary for 2 h. The relative density (level) of 
proteins over the GAPDH (10494-1-AP; SanYing, China) 
band was quantified with the Gel-Pro Analyzer (Media 
Cybernetics).

Cell apoptosis analysis
Apoptosis was analyzed using Annexin V/PI dou-
ble staining. After transfection for 48  h, the cells in the 
logarithmic growth phase were harvested and rinsed 
twice with ice-bathed PBS, then FITC-labeled enhanced 
annexin V (3 μl) and propidium iodide (3 μl) were added 
to the cell suspension at the final volume of 150 μl. After 
incubation for 30 min, flow cytometry was performed on 
a FACS Calibur instrument. The number of apoptotic and 
necrotic cells were calculated by flow cytometry (Bec-
ton–Dickinson, USA) and analyzed by Flowjo Software. 
The ratio of early apoptosis was used for the test results. 
The experiments were performed three times indepen-
dently, and a representative is shown.

Luciferase reporter assay
Cells were seeded in 24-well plate at a concentration of 
2 × 105 cells/per well and co-transfected 24 h later with 
pGL3-luc-Rab27B UTR WTand miR-20a-5pmimic/
antagomir or NC. After transfection for 48 h, cells were 
collected, and the relative luciferase activity was per-
formed using Dula-Luciferase Reporter Assay Kit (Pro-
mega). The relative firefly luciferase activities of the UTR 
construct was analyzed as previously reported [23].

Wound‑healing assays
For cell motility assays, cells stably expressing mimics, 
antagomiRs or NC were seeded in 24-well plates and cul-
tured to near confluence. After culture for 6 h in DMEM 
without FBS, a linear wound was carefully made using 
a sterile 10 µl pipette tip across the confluent cell mon-
olayer, and the cell debris was removed by washing with 
phosphate-buffered saline. The cells were incubated in 
DMEM plus 10% FBS, and the wounded monolayers were 
then photographed at 0, 8, 24 and 48 h after wounding.

Invasion assays
According to the manufacture’s description, cell invasion 
assays were performed in a 24-well Transwell Chambers 
with 8  mm pore size chamber inserts (Corning, USA). 
In the assay, 1 ×  104 cells were seeded into the upper 
chamber with 200 µl of DMEM without FBS. In the lower 
chamber, 600 µl of DMEM supplemented with 10% FBS 

was added. After incubation for 40  h at 37  °C and 5% 
CO2, the non-invading cells were removed from the plate 
with cotton  stick.The cells that moved to the bottom 
surface were stained with 0.1% crystal violet for 30 min 
at 37  °C. The cells were then imaged and counted in at 
least 5 random fields using a CKX41 inverted microscope 
(Olympus, Tokyo, Japan). The assays were conducted 
three independent times.

Immunofluorescent staining for γ‑H2AX
Twenty-four hours following transfection with miR-
20a-5p mimic or miRNA mimic negative control, 1 × 105 
cells were seeded in chamber slides and incubated over-
night. The cells were subsequently exposed to 4 Gy irra-
diation (IR). Twenty-four hours following IR, the cells 
were fixed in 4% paraformaldehyde, permeabilized in 
0.1% Triton X-100 (Sigma), blocked in 2% bovine serum 
albumin and incubated with a primary antibody against 
γ-H2AX (SanYing, China) overnight at 4 °C. The primary 
antibody was subsequently washed off, and a second-
ary antibody conjugated to fluorescein isothiocyanate 
was applied to the slides. Cells were washed with phos-
phate-buffered saline and counterstained with DAPI. The 
γ-H2AX foci were observed under a fluorescence micro-
scope (Olympus). For each group, the γ-H2AX foci were 
counted in ≥50 cells.

Statistical analyses
The data are presented as the mean, and the error bars 
indicate the SD. All statistical analyses were performed 
with Excel (Microsoft, Redmond, WA, USA). Two-tailed 
Student’s t test, a one-way analysis of variance or Mann–
Whitney U test was used to calculate statistical signifi-
cance. A P-value of <0.05 was considered significant.

Results
Rab27B negatively regulates the NPC radio‑resistance
We select two NPC cell lines, CNE-1 and CNE-2 as our 
targets, which were reported as relatively radio-resistant 
and radio-sensitive cell lines of nasopharyngeal cancer 
(NPC), respectively [19, 24–26]. We first detected the 
radio-sensitivity of these two cell lines and found that 
CNE-1 cells are more radio-resistant than CNE-2 cells 
(Fig.  1a). To detect the differentially expressed miRNAs 
in NPC cells, we performed an RNA-seq assay of CNE-1 
and CNE-2 cells (Additional file 1: Table S1). The level of 
miR-20a-5p was over fourfold higher in CNE-1 cells than 
that in the CNE-2 cells. We thus further tested the expres-
sion of miR-20a-5p by qRT-PCR, which gave a 3.52-fold 
higher expression in CNE-1 cells (Fig.  1b). Afterwards, 
we predicted the target genes of miR-20a-5p based on 
the literature and websites. The predicted target mRNAs 
were further subject to comparing the expression pattern 
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between CNE-1 and CNE-2 cells by RNA-seq analysis. 
Dozens of common genes have been found which show 
a drastically different expression pattern in the two cell 
lines. Among them, the Rab27B gene is one of the signifi-
cantly differentially expressed genes that negatively cor-
relate with the expression of miR-20a-5p. Consequently, 
the expression level of Rab27B was higher in CNE-2 than 
CNE-1 at both mRNA (RNA-seq based miR-omic: 1.34:1, 
and qRT-PCR analysis: 4.93:1) and protein level (western 
blot: 1.45:1) (Fig. 1c–e). The lower expression of Rab27B 
in radio-resistant CNE-1 cells suggests that Rab27B is a 
negative regulator of NPC radio-resistance.

The Rab27B gene is a target of miR‑20a‑5p in NPC cells
We found that Rab27B negatively correlates with the level 
of miR-20a-5p, which indicated that miR-20a-5p might 
regulate the expression of Rab27B. To check whether 
Rab27B is one of the authentic targets of miR-20a-5p, 
we determined the Rab27B level in the miR-20a-5p 
mimic transfected CNE-2 and the antagomiR trans-
fected CNE-1 cells versus the NC (scramble sequence 
control) transfected. The transfection of miR-20a-5p 
mimic in CNE-2 cells increased its expression to over 
fourfold (Fig. 2a), whereas the transfection of miR-20a-5p 

antagomiR in CNE-1 cells significantly decreased its level 
to 81% (Fig. 2a). Following the changes of the miR-20a-5p 
level, a miR-20a-5p mimic transfection brought down the 
Rab27B mRNA to 80% (Fig. 2b) and protein to nearly 16% 
(Fig. 2c) compared to that in the NC transfected CNE-2 
cells. As expected, the transfection of miR-20a-5p antag-
omiR increased the mRNA level of Rab27B by 5.36 fold 
(Fig. 2b) and the protein level by 1.85 fold in CNE-1cells 
(Fig. 2c).

Sequence analysis revealed that 3′-UTR region of 
Rab27B contains one potential binding motif (from 627 
to 649  bp) for miR-20a-5p (Fig.  2d). To further con-
clude whether Rab27B is a direct target of miR-20a-5p, 
we put the wild-type Rab27B gene at the downstream of 
the Renilla luciferase gene of pGL3-control vector (Pro-
mega) to create pGL3-Rab27B UTR WT (Fig. 2d). These 
constructs were transfected into CNE-2 and CNE-1 
cells, respectively, to compare the luciferase activity. 
The pGL3-Rab27B-UTR WT gave the relative luciferase 
activity of 0.78 (Fig. 2e). The transfection of miR-20a-5p-
mimic into CNE-2 cells significantly brought down the 
luciferase activity of pGL3-Rab27B-UTR WT construct, 
whereas the control cells showed almost the same activ-
ity upon the transfection of miR-20a-5p-mimic (Fig. 2e). 

Fig. 1  Different expression patterns of miR-20a-5p/Rab27B in nasopharyngealcells CNE-1 and CNE-2. a The survival fraction of CNE-1 and CNE-2 
NPC cells treated as described. The surviving fraction was calculated using the multitarget single-hit model: Y = 1−(1 − exp(−k*x))^N. The miR-
20a-5p expression levels in CNE-1 and CNE-2 cells were analyzed by miR-seq and qRT-PCR analyses in table (b). The expression level of Rab27B is 
higher in CNE-2 cells than in CNE-1 cells, as summarized in table (c). qRT-PCRandWestern blot analyses are shown in plots d and e, respectively
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Meanwhile, the transfection of miR-20a-5p-antagomiR 
into CNE-1 cells drastically raised the luciferase activ-
ity of pGL3-Rab27B-UTR WT construct (Fig.  2e). Get-
ting together, our results strongly indicate that Rab27B is 
indeed a target of miR-20a-5p.

The Rab27B expression negatively correlates with the 
miR‑20a‑5p’s promoting effect on the NPC radio‑resistance
To explore the role of Rab27B in the NPC radio-resist-
ance, we first transfected miR-20a-5p-mimic into CNE-2 
cells and tested the level of miR-20a-5p. The transfec-
tion of miR-20a-5p-mimic indeed increased the level 
of miR-20a-5p in the CNE-2 cells. Accompanied by 
the increase of miR-20a-5p, the cell survival rate was 
increased against the radiation treatment in the CNE-2 
cells (Fig. 3a). In addition, the fluorescent immunostain-
ing against γ-H2AX also showed increased cell viability 
upon the addition of miR-20a-5p-mimic into the CNE-2 
cells (Additional file  2: Figure S1). Consequently, the 
transfection of miR-20a-5p-mimic into the CNE-2 cells 
desensitizes NPC cells to irradiation (Additional file  1: 
Table S1). Then we transfected the si-Rab27B into CNE-2 
cells and tested the effect against radiation. The transfec-
tion of si-Rab27B into CNE-2 cells indeed decreased the 
level of Rab27B in both mRNA (0.57:1) and protein level 
(0.48:1), compared to the control cells (Fig. 3b, c). Con-
sequently, the radio-resistance of CNE-2 cells was also 

increased with the transfection of si-Rab27B (Fig.  3d). 
In addition, we transfected miR-20a-5p antagomiR into 
CNE-1 cells to decrease the level of miR-20a-5p, which 
results in a lower cell survival rate against irradiation 
treatment in CNE-1 cells (Fig.  3e). A similar effect was 
also found in the fluorescent immunostaining assays 
against γ-H2AX (Additional file 2: Figure S1). Moreover, 
we over-expressed Rab27B by 2.23 fold (Fig. 3f, g), which 
also results in a lower cell survival rate against irradiation 
treatment in CNE-1 cells (Fig. 3h). The results correlate 
well with the negative regulation of Rab27B in the NPC 
radio-resistance. Taken together, the Rab27B gene does 
contribute a great deal to the miR-20a-5p’s promoting 
effect on the NPC radio-resistance.

MiR‑20a‑5p promotes cell migration and invasion of NPC 
cells
To explore whether miR-20a-5p is involved in the metas-
tasis of NPC cells, we compared the migration and inva-
sion capability of CNE-1 and CNE-2 cells using the 
wound-healing and invasion assays, respectively. We first 
transfected miR-20a-5p mimics or si-Rab27B into CNE-2 
cells and detected the migration and invasion. Compared 
to the control cells, transfection of miR-20a-5p mimic 
or si-Rab27B significantly increased the ability of cell 
migration to about 2.31- and 1.33-fold, similar to that 
for the invasion assays (Fig.  4a, b). Then we transfected 

Fig. 2  Rab27B is a target of miR-20a-5p in NPC cells. Level of miR-20a-5p,Rab27B mRNA and protein levels in the miR-20a-5p mimic (5PM)-trans-
fected CNE-2 and the miR-20a-5p antagomiR (5PA)-transfected CNE-1 cells versus the negative control (NC) cells, as determined by qRT-PCR (a, b) 
and western blot analyses (c). The perfectly matched region of Rab27B gene 3’-UTR with miR-20a-5p (d). The relative luciferase activity (fold) of the 
reporter with wild-type (WT) Rab27B-UTR were determined in the miR-20a-5p mimic or anti or Controls transfected NPC cells. The reporter without 
Rab27B-UTR (Vec) was used as a reference. The Renilla luciferase activity of a co-transfected control plasmid was used to control the transfection 
efficacy (e). The representative results from three independent experiments shown. *P value < 0.05; **P value < 0.01
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miR-20a-5p antagomiRs or over-expressed GFP-Rab27B 
into CNE-1 cells and also performed the same experi-
ments. The results showed that both the migration and 
invasion of CNE-1 cells were decreased to some extent 
upon the transfection (Fig. 5a, b). All these results suggest 
that miR-20a-5p enhances the migration and invasion of 

NPC cells, which might be conducted by the regulation 
of the Rab27B gene.

In line with its negative effect of Rab27B on cell migra-
tion and invasion, a siRNA-mediated Rab27B repression 
reduced the cell apoptosis rate from 5.97 to 3.74%, indi-
cating an elevated cell survival rate upon the addition of 

Fig. 3  Effects of a forced reversal of the miR-20a-5p or Rab27B levels on the radio-resistance of CNE-1 and CNE-2 cells. MiR-20a-5p mimic (5PM)-
transfected CNE-2 increases NC cells resistance to radiation treatment versus the negative control (NC) cells (a). Rab27B protein level (western blot 
analysis) and mRNA determined by qRT-PCR in the si-Rab27B-transfected versus the NC-transfected CNE-2 cells treated with a 4-Gy dose of radia-
tion (b, c). Si-Rab27B-transfected CNE-2 increases NC cells resistance to radiation treatment versus the negative control (NC) cells (d). MiR-20a-5p 
antagomiR (5PA)-transfected CNE-1 decreases NC cells resistance to radiation treatment versus the negative control (NC) cells (e). Expression of 
Rab27B in overexpression construct transfected CNE-1 cells. Representative areas of CNE-1 cells transfected with GFP-Rab27B ectopic expression 
construct were shown and GFP was used as a negative control (f). Rab27B mRNA level (qRT-PCR analysis) in the GFP-Rab27B-transfected versus 
the GFP-transfected CNE-1 cells treated with a 4-Gy dose of radiation (g). GFP- Rab27B-transfected CNE-1 decreases NC cells resistance to radiation 
treatment versus the negative control (GFP) cells (h)
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si-Rab27B into CNE-2 cells (Fig. 6). In line with the apop-
tosis rate, the expression of the cell apoptosis markers, 
PARP1 and GAPDH were significantly decreased upon 
the transfection of si-Rab27B into CNE-2 cells (Addi-
tional file 3: Figure S2). A similar effect was also found in 
the miR-20a-5p-mimic transfected CNE-2 cells (Fig. 6a–
c). On the other hand, the transfection of miR-20a-5p-
antagomiR slightly increased the cell apoptosis rate in 
CNE-1 cells, which also suggests a promoting effect of 
Rab27B on NPC radio-resistance (Fig.  6a–c). The levels 
of PARP1 and GAPDH were also increased, indicating a 
higher apoptosis rate in CNE-1 cells upon the transfec-
tion of miR-20a-5p-antagomiR (Additional file 3: Figure 
S2). Taken together, The Rab27B gene does contribute a 
great deal to the miR-20a-5p’s promoting effect on the 
NPC radio-resistance.

Discussion
Radiation therapy is one of the major treatments against 
tumors as it has the advantages of being non-invasive 
and well tolerated. However, radiotherapy resistance 
is also a common occurrence that blocks the effective 
therapy [27]. The emerging studies have focused on the 

resistance mechanisms and the involved biological fac-
tors [28, 29].  Among the factors involved, miRNAs are 
reported to be closely associated with tumor radiosen-
sitivity [30–32]. The miR-20a-5p studied here is dys-
regulated in many human cancers [33–35], and the high 
level of miR-20a-5p was considered as an indicator of 
advanced stage, poor prognosis and chemo-therapy 
resistance. Of note, miR-20a was also found to induce cell 
radio-resistance by activating the PTEN/PI3 K/Akt sign-
aling pathway in hepatocellular carcinoma [18]. However 
the knowledge of miR-20a-5p on cancer radio-resistance 
is still limited, especially in NPC. In this study, we found 
that miR-20a-5p was involved in NPC radio-resistance, 
probably by targetingRab27B 3′-UTR. Furthermore we 
demonstrated that miR-20a-5p-mediated Rab27B repres-
sion promoted the invasion and metastasis of NPC cells. 
Both role and mechanisms of miR-20a-5p and Rab27B in 
NPC radio-resistance were systematically investigated in 
cultured cells. Furthermore, the influence of miR-20a-5p 
and Rab27B on the growth of tumor xenografts was also 
addressed in nude mice.

Rab27B is a member of Ras-like small GTPases that 
modulate endocytosis and exocytosis vesicle-trafficking 

Fig. 4  Wound-healing assays was performed with transient expression of the miR-20a-5p mimic (5PM) mimic, si-Rab27B and corresponding nega-
tive control (NC) (a). Invasion assays was performed with transient expression of the miR-20a-5p mimic (5PM) mimic, si-Rab27B and corresponding 
negative control (NC) (b). The data are representative of three independent experiments. *P < 0.05
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control [36–39]. Rab27B is normally expressed in a large 
number of secretory cells to regulate secretory pathways 
[40]. In addition, it is reported that aberrant expression 
of Rab27B is associated with several types of cancers. For 
examples, the increased Rab27B expression correlates 
with lymph node metastasis and is a marker for breast 
cancer progression [41, 42]. Rab27B can also be recog-
nized as a valuable prognostic indicator for hepatocellular 

carcinoma patients. In addition, Rab27B regulates inva-
sive tumor growth of colorectal cancer [43], hepatocellu-
lar carcinoma [44] and breast cancer [42, 45, 46]. Based 
on the above studies, Rab27B demonstrates oncogenic 
function and plays important roles in cancer develop-
ment. However, the expression of Rab27B, as well as its 
role in NPC, has barely been investigated. In this study, 
our data suggest that Rab27B might facilitate the invasive/

Fig. 5  Wound-healing assays was performed with transient expression of the miR-20a-5p antagomiR (5PA), GFP-Rab27B and corresponding nega-
tive control (NC) (a). Invasion assays was performed with transient expression of the miR-20a-5p antagomiR (5PA) and corresponding negative 
control (NC) (b). The data are representative of three independent experiments. *P < 0.05
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metastatic phenotypes of NPC, and thus might be treated 
as a novel marker for clinical diagnosis. We showed that 
the expression of Rab27B is associated with the radio-
resistance of NPC cell lines, which is mediated by miR-
20a-5p. Despite that the expression level of γ-H2AX is 

correlated with the cell apoptosis of NPC cells, other path-
ways may be activated upon the exposure to the radiation, 
such as JNK signal pathway [47]. The detailed mechanism 
for the miR-20a-5p-mediated Rab27B repression of NPC 
radio-resistance remains to be elucidated.

Fig. 6  Effects of the forced reversal with transient expression of the miR-20a-5p mimic (5PM), si-Rab27B and corresponding negative control (NC) 
levels on the apoptosis of CNE-2 cells, and the effects of the forced reversal with transient expression of the miR-20a-5p antagomiR (5PA), GFP-
Rab27B and corresponding negative control (NC) levels on the apoptosis of CNE-1 cells, with a graph of the analyzed data (a, b) and plots of the 
original FACS data (c) *P < 0.05, **P < 0.01
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