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Abstract 

CD146 alternatively called melanoma cell adhesion molecule (MCAM), is a biomarker and therapeutic target of clinical 
significance. It is found on different cells including the endothelial cells and lymphocytes which participate in het-
erotypic and homotypic ligand-receptor. This review concentrated on the CD146 expression T cells (or lymphocytes) 
centering on Treg in lung cancer. Here, we have also considered the vigorous investigation of CD146 mainly acknowl-
edged new roles, essential mechanisms and clinical implications of CD146 in cancer. CD146 has progressively become 
a significant molecule, particularly recognized as a novel biomarker, prognosis and therapy for cancer. Hence, target-
ing CD146 expression by utilization of methanol extracts of Calotropis procera leaf may be useful for the treatment of 
carcinogenesis.
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Background
CD146 is a cell adhesion molecule (CAM) which was first 
discovered in 1987. It is 113,000-daltons membrane gly-
coprotein that comprises of transmembrane region, five 
immunoglobulin-like domains and a short cytoplasmic 
tail [1]. CAMs are utilized in a wide array of pathophysio-
logical processes such as apoptosis, cell cycle, cell migra-
tion, cell–cell and cell–matrix interactions, cell signaling 
and morphogenesis during growth and tissue remod-
eling. Cell adhesion is an important process necessary 
for the accurate performance of eukaryotes. Research-
ers have shown the roles of CAMs in diversity of patho-
logical progressions in cancer, pulmonary hypertension, 
autoimmune diseases, inflammation and infections [2, 3]. 
CD146 is known to be a member of the CAM because of 
its sequence homology analysis. It is a well-known adhe-
sion marker of endothelial cells [4], which has also been 
recognized on some other cell types such as lympho-
cytes, pericytes, immune cells, mesenchymal stem cells, 

human alveolar periosteal sheets, bone marrow fibro-
blasts etc. [5–9]. It has been studied extensively in circu-
lating endothelial cells [10, 11]. Hence it is called MCAM 
(melanoma cell adhesion molecule). Emerging researches 
have shown CD146 is expressed on different types of lung 
cancer [12–15]. Therefore, CD146 may be a possible bio-
marker for tumor diagnosis, therapy and prognosis.

Lung cancer remains the noticeable reason for cancer 
mortality globally [16] and the second most widespread 
cancer in homo sapiens [17]. Medically, the diagnosis of 
lung cancer is very dismal. Nevertheless, most cases of 
the advanced-stage lung cancers are very common, and 
investigations are going on seriously. However, the prog-
nosis for patients with lung cancer remains unfavora-
ble [18]. Hematologic irregularities, including anemia, 
thrombocytosis leukocytosis and lymphopenia are fre-
quently observed in lung cancer patients. In the healthy 
subjects, the expression of CD146+ T cells is between 1 
and 3% in the blood. However, the expression in a disease 
state such as lung cancer is significantly increased com-
pared to the healthy patient [6]. CD146+ T cells have 
improved the interaction to endothelial monolayers, have 
effector memory phenotype, T regulatory phenotype, in 
adhesion, several genes are involved such as galectin 1 

Open Access

Cancer Cell International

*Correspondence:  doctorayobami@gmail.com; 15837101166@163.com; 
zhangxiaoju1010@henu.edu.cn
Department of Respiratory and Critical Care Medicine, Henan 
Provincial People’s Hospital, People’s Hospital of Zhengzhou University, 
Zhengzhou 450003, Henan, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-019-0969-9&domain=pdf


Page 2 of 13Olajuyin et al. Cancer Cell Int          (2019) 19:247 

(LGAL 1), galectin 3 (LGAL 3), translocation, and inflam-
mation, which may protect apoptosis [19]. These charac-
teristics of the CD146+ T cells in the peripheral blood 
have steered to the assumption that these may demon-
strate a minor pool of cells for homing of activated T cells 
[19, 20] in retort to inciting stimuli. The expression of 
CD146+ T cells in lung cancer and autoimmune diseases 
patients are said to be elevated [21–23]. The significance 
of CD146 T cells at the site of inflammation in these dis-
eases remains unexplored.

Calotropis procera (CP) is a xerophytic perennial shrub 
which is found majorly in subtropical and tropical Mid-
dle East, Asia and Africa [24]. Various parts of CP had 
been extensively utilized in alternative medicine because 
of its pharmacologically active compounds discovered 
in the plant’s parts, leaves, flowers, roots, and its milky 
latex [25, 26]. CP had been investigated to contain some 
important compounds which includes trierpenoids, 
anthocyanins, norditerpenic esters, organic acid, cysteine 
protease procerain, alkaloids, phenol, flavonoids card-
enolides [27, 28]. Hence, this review focused on the 
CD146+ expression T cells (or lymphocytes), apoptosis 
of T cells and lung cancer, binding partners of CD146+ , 
molecular signaling of CD146+, CD146+ a novel marker 
of lymphocytes subset population, immunophenotyping 
and detection of CD146+, CD146+ T cells in cancer and 
effects of methanol extract of Calotropis procera leaf on 
CD146 expression. Investigation unfolding the molecular 
mechanism and regulation of CD146+ expression on the 
T cells is still limited.

Main text
Apoptosis of T cells and lung cancer
Apoptosis is a biochemical, physiological and patho-
logical process that is involved in the regulation of the 
homeostasis. It regulates cell number in tissues and also 
eradicates distinct cells that intimidate animal survival 
[29]. It is essential in the organism due to the fact that 
inadequate apoptosis may results in lung cancer. Apopto-
sis occurring from activation of T cells is believed to help 
as a feedback mechanism that removes activated T cells 
[30]. Dissimilar to immature thymocytes and renovated 
T cell lines, resting T cells are extremely resilient to apop-
tosis after early activation but become highly vulnerable 
[31–33]. Therefore, most investigations on activation 
induced cell death (AICD) have studied mainly the con-
nections between the death receptors, CD95 (Fas) and 
tumor necrosis factor (TNF)-α receptor, with their ago-
nists CD95L (Fas ligand) [29, 34, 35]. Inactive normal T 
cells express little or non-measurable levels of CD95 and 
CD95L, nevertheless mitogenic activation of primary 
T cells distinctly proliferates their expression [36, 37]. 
Extra participants of the TNF-α receptor family, such as 

TRAIL-R1 and TRAIL-R2, can also activate apoptosis in 
vulnerable cells after binding of their ligands [29]. Not-
withstanding the significant function of the death recep-
tors, developing suggestion shows that environmental 
components, such as nonlymphoid secreted factors and 
cytokines, can control apoptosis of activated T cells, thus 
highlighting the implication of the environment in the 
maintenance of T-cell homeostasis [38, 39]. Any dispar-
ity in the apoptotic procedure may lead to some possible 
diseases state situations, lymphocyte accumulation, lym-
phocyte depletion, and lung cancer.

Other causes involved in various forms of apoptosis are 
reactive oxygen species (ROS). Investigators have studied 
the connection of ROS in apoptosis of T-cell blasts and 
hybridomas by utilizing antioxidants such as N-acetyl 
cysteine and glutathione [40, 41]. Apoptosis in these cells 
is as a result of changes in mitochondrial permeability 
and following the release of ROS [42]. Investigations con-
ducted on primary T cells, however, show that the forma-
tion of intracellular ROS is essential for T-cell activation 
and IL-2 secretion but also regulates activation-induced 
T-cell apoptosis, therefore proposing that intracellular 
ROS may possibly be involved in peripheral T-cell home-
ostasis [43–45]. Though, studies with primary T cells are 
frequently accomplished in cultures deficient of other 
“nonlymphoid” cells, although activation- induced T-cell 
apoptosis is assumed to happen in organs and tissues 
where other cell types, such as red blood cells (RBCs), 
are present [46]. Furthermore, the principal role is oxy-
gen and CO2 transport [47]. Endoplasmic reticulum (ER) 
is responsible for intracellular calcium (Ca2+) levels, pro-
tein folding, cellular responses to stress, protein synthe-
sis, and trafficking [48]. Variations in Ca2+ regulation and 
increase of misfolded proteins in the ER lead to ER stress 
that eventually results in apoptosis (Fig. 1). Actually, the 
main factors that are responsible for apoptosis are the 
death receptor and the mitochondrial pathway [49]. The 
mechanism of ER stress-mediated apoptosis is assumed 
to utilize mitochondria, protein kinases, pro, and anti-
apoptotic proteins heme oxygenase, microtubules, Ca2+, 
and caspases [48, 50–52]. ER stress-induced apoptosis 
which has been characterized include brefeldin, tuni-
camycin and thapsigargin [49]. Nevertheless, the inves-
tigation on the main mechanism of ER stress-induced 
apoptosis is still limited.

Lung cancer can be regarded as a progression of 
genetic deviations during which a normal cell is changed 
into a malignant one whereas avoidance of cell death or 
apoptosis is one of the important factors in the lung cell 
that leads to malignant carcinogenesis [53]. Therefore, 
when there is insufficient or decreased apoptosis, it may 
lead to carcinogenesis. Lung malignant cell may procure 
a decrease in apoptosis. There are some major ways in 



Page 3 of 13Olajuyin et al. Cancer Cell Int          (2019) 19:247 

which decrease in apoptosis may occur which includes 
the imbalance of the anti-apoptotic and pro-apoptotic 
proteins, decrease in caspase expression and malfunction 
of the death domain and reduced death receptor signal-
ing. Investigations have been done on different proteins 
which indicate the presence of pro- or anti-apoptotic 
effects in the cell. Overexpression and under-expression 
have vital effects on lung cancer by decreasing apopto-
sis in the cancer cells. The Bcl-2 (B- cell lymphoma 2) 
proteins utilized the intrinsic pathway for the control of 
apoptosis and act in the upstream of molecular damage 
and take effect in the mitochondria [54]. There are dif-
ferent groups of Bcl 2, which includes group 1 (Bcl-B/
Bcl2L10, A1/Bfl-1, Bcl-w, Bcl-2, Bcl-xL, and Mcl-1) 
which are anti-apoptotic proteins, group 2 (Bik Bid, 
Noxa, Bim, Bmf, Puma, Bad, Bmf, and Hrk) which are 
pro-apoptotic and responsible for endoplasmic reticu-
lum stress, DNA damage, growth factor deficiency, group 
3 (Bak, Bax, and Bok/Mtd) which are also pro-apoptotic 
[55]. The anti-apoptotic and pro-apoptotic members of 
the Bcl-2 family undergo imbalance, which leads to dys-
regulated apoptosis (Fig.  2). Human lung cancers are 

associated with a mutation in the p53 gene [56–58]. The 
Inhibitor apoptosis proteins (IAPs) include X-linked IAP 
(XIAP, BIRC4), BIRC8, BIRC7, apollon (BRUCE, BIRC6), 
surviving (BIRC5), c-IAP2 (BIRC3), c-IAP1 (BIRC2) and 
NAIP (BIRC1). They are characterized by utilizing the 
baculovirus IAPs domains. They are very useful during 
apoptosis and signal transduction. IAPs can prevent the 
caspase from binding to their substrates [59]. Caspases 
are very vital in the initiation (caspase-2, -8, -9 and -10) 
and execution (caspase-3, -6 and -7) of apoptosis. Hence, 
low levels of caspases expression or deficiency in caspase 
roles may result to reduce in apoptosis and lung carcino-
genesis. Currently, there are a lot of drugs and small mol-
ecules which are manufactured based on the mechanisms 
of apoptosis which includes sodium butyrate, oblimersen 
sodium, depsipetide, HA14-1, fenretinide, ABT-263, fla-
vopiridol gossypol, ABT-737, GX15-070, which direct 
action on the Bcl 2 proteins [60–64]. Some drugs and 
small molecules also target p53 and a lot of clinical tri-
als are ongoing for some new drugs. A search at http://
www.clini​caltr​ials.gov will reveal molecules and drugs 

Fig. 1  Mitochondria and ER Apoptosis. Variations in Ca2+ regulation and increase of misfolded proteins in the ER lead to ER stress that eventually 
results in apoptosis

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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that target numerous proteins associated with apoptosis 
such as Bcl 2 family, IAPS and p53.

CD146 expression on the CD4+ Treg
CD146 formerly known as a melanoma marker [65], is 
an important glycoprotein found on the integral mem-
brane of the cells. It is linked to the immunoglobulin 
superfamily with a feature V–V–C2–C2–C2 domain 
structure, and its cytoplasmic tail contains potential 
protein kinase C recognition sites and PDZ binding 
sites [66] indicating possible involvements in cell sign-
aling (Fig. 3). CD146 mediates transduction of outside-
in signals [67]. However, the precise extracellular ligand 
for CD146 is unclear. Sendo1 crosslinking with CD146, 
activate the phosphorylation of FAK through the link 

with Fyn [68]. Moreover, previous investigations dis-
covered that CD146 mediates tumor secretion-induced 
p38/IkB kinase/nuclear factor-kB signaling cascade, 
which is essential in inducing endothelial cell activa-
tion, resulting in tumor angiogenesis [69–71]. Intra-
cellular effectors and binding partners are very crucial 
in completely understanding of CD146 signaling. Treg 
cells may possibly also inhibit the antitumor immune 
responses. Predominantly in the environment of can-
cer, Treg-cell occurrences and roles are significant since 
increased numbers could results to tumor progression 
[72]. In most cancer patients, the immunophenotyp-
ing of Treg cells have concentrated primarily on co-
expression of CD4+ and CD25+, while different types 
of Treg cell subtypes (Table 1) exist. To better compre-
hend and exploit Treg-cell biology in association with 

Fig. 2  Dysregulated apoptosis and lung cancer. The anti-apoptotic and pro-apoptotic members of the Bcl-2 family undergo imbalance, which 
leads to dysregulated apoptosis. The overexpression of anti- apoptotic include group 1 (Bcl-2, Bcl-xL, Mcl-1, Bcl-w, A1/BF-1, BclB/Bcl2L10) and 
under expression of group 2 (Bim, Bid, Puma, Noxa, Bad, Hrk, Bik) and under expression of group 3 (Bak, Bax, and Bok/Mtd) resulted to dysregulated 
apoptosis and lung cancer. Other factors involved includes reduced expression of caspases, increased expression of inhibitor of apoptosis proteins, 
mutation on p53, impaired receptor signalling pathway and reduced expression of death receptor
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carcinogenesis and tumorigenesis, it will be very inter-
esting to investigate more specific cell-surface markers.

Binding partners of CD 146
Previously CD146 was assumed to have a homotypic 
ligand-receptor interaction, a mechanism which is still 
unclear [20]. Recent investigations propose a ligand 
for CD146 is laminin-411 (α4-chain, a β1-chain, and 

a γ1 chain, also known as laminin-8) [73, 74]. Further 
investigations were conducted to show that CD146+ 
cells [75, 76] were self-regulated of very late antigen-4 
(VLA-4) and in combination with p-selectin glycopro-
tein ligand-1 (PSGL-1)-mediated progressing of these 
cells. Galectin-1 (LGAL-1) and galectin-3 (LGAL3) have 
been shown to bind to CD146 [77]. Vascular endothe-
lial growth factor receptor-2 (VEGFR2) and CD146 act 

Fig. 3  T Cell Receptor Complex and associated components. Showing the possible involvement of CD146 in cell signaling

Table 1  Characteristics of Subsets of T cells (Treg)

nTreg natural regulatory T cell, ICOS inducible costimulator, iTreg inducible/adaptive regulatory T cell, Tr1 cell IL-10-producing type 1 regulatory T cell, GB granzyme B, 
RORGTF ROR gamma transcription factor

Subset Specific marker Secretory products Actions Location

nTreg CD4, CD25, Foxp3 IL-10, TGF-β Block T cell proliferation, suppression 
of DCs, inhibition of effector Th1, 
Th2, and Th17 cells; suppress mast 
cells, basophils, and eosinophils; 
interact with resident tissue cells

Thymus

nTeg CD4, CD25, CD127 IL-10, TGF-β Block T cell proliferation, Neonatal thymus

ICOS(+) Treg CD4, CD25, Foxp3, ICOS IL-10, IL-17, IFN-γ Suppress hapten-reactive CD8(+) T 
cells

Generated from nTregs

iTreg CD4, Foxp3 IL-10, TGF-β Similar to nTreg Periphery

Tr1 CD4, CD25 IL-10 Suppress effector Th cell migration 
and functions suppress mast cells, 
basophils, and eosinophils

Generated from non-Treg cell precursors 
and home lungs and draining lymph 
nodes

CD8(+)Treg CD8, Foxp3, CD25 (not for 
tonsil origin), CD28

IL-10, TNF-α, IFN-γ, GB Block activation of naive or effector 
T cells; suppress IgG/IgE antibody 
responses [9], IL-4 expression and 
the proliferation of CD4(+) T cells

Generated from OT-1 CD8 cells [9] and 
tonsils

IL-17-produc-
ing Foxp3 (+) 
Treg

CD4, Foxp3, CCR6, RORGTF IL-17 Inhibit the proliferation of CD4(+) 
effector T cells

Differentiated from CD4(+)Foxp3(+)
CCR6(−) Tregs in peripheral blood and 
lymphoid tissue
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together unswervingly and that this binding improves 
VEGFR2 signaling [78]. In endothelial cell and T cells, 
CD146 is a useful biomarker. It has importance in angio-
genesis; nevertheless the molecular mechanism underly-
ing angiogenesis remains unclear. CD146 and Wnt5a are 
binding partner [79]. The accounts of multiple ligands 
for CD146 are still debatable due to the mechanisms of 
adherence and migration of estimate the proportion of 
immune and cancer cells (EPIC) T cells. However, the 
investigations unfolding these ligands for CD146 have 
not been fully explored confirmed by subsequent studies 
and it is unclear if these ligands are competitive or coop-
erative. Further researches and explorations are required 
to explain the binding ligands of CD146 and the precise 
mechanism of migration and signaling in EPIC T cells.

Molecular signaling of CD146
Molecular signaling of CD146 commitments have been 
extensively considered in numerous non-leukocytic 
cells types; but an inclusive, clear depiction of CD146 
is interesting for investigation. Protein tyrosine kinase 
(PTK)-dependent signaling pathway, with tyrosine phos-
phorylation of the focal adhesion kinase, p125FAK, pax-
illin and NF-kB are important molecular signaling of 
CD146 [68, 80]. Investigations have been conducted on 
the reciprocal control of CD146 and Akt (serine/threo-
nine specific protein kinase B) in melanoma cell lines. 
Akt is linked with tumor cell survival, proliferation, and 
invasiveness. The triggering of Akt is a variation detected 
in human cancer and tumor cells. Tumor cells that have 
regularly active Akt may be contingent on Akt for exist-
ence [81]. Therefore, Akt pathways may be possible ther-
apies for cancer and tumor cells resulting in inactivation 
of the Bcl-2-associated death promoter (BAD).

Pervious Investigations [19] suggest utilizing human 
umbilical cord endothelial cells, as well as zebrafish 
embryos showed that CD146 binds to Wnt5a with high 
affinity and is important for endothelial cell migra-
tion and activity of c-jun amino-terminal kinase (JNK) 
via non-canonical signaling. The phosphorylation of 
Disheveled (Dvl), insulin-like growth factor binding pro-
tein 4 (IGFBP4), an opponent of the Wnt/β-catenin sign-
aling, was discovered to trigger Wnt/β-catenin signaling 
pathway and to encourage the expression of CD146 in 
renal carcinoma cells. Currently, research is limited in 
the investigation of human T cells describing the signal-
ing pathways associated with CD146 engagement.

CD146 a novel marker of lymphocyte subset population
Initially, the expression of CD146 on lymphocyte 
appeared in 1997 [82]. Hence, the expression of CD146 
on the leukocytes of healthy donors was not significant. It 
may be found in CD4+ and CD8+ subpopulation using 

TCRVβ analysis. The low percentage may be detected 
on B cells and sometimes in NK population. Moreover, 
skin specimens from contact dermatitis patients estab-
lished that 50–80% of the CD3+ cells in tissue sections 
were CD146+. This initial investigation lay quiescent 
for nearly a decade until another researcher identified 
CD146+ T cells in the peripheral blood circulation of 
healthy donors [6]. CD146 could be upregulated on B 
cells by mitogen stimulation such as PMA, and by activa-
tion with a combination of CD40L and IL-4 [6]. The uti-
lization of the techniques of immunohistochemistry has 
demonstrated the presence of CD146 on immature corti-
cal thymocytes, confirming the idea that this antigen was 
expressed on T cells at an early stage [83]. It was also dis-
covered in the peripheral blood of Treg cells in the lung 
cancer patient which was significantly different from con-
trol (healthy subjects).

Immunophenotyping and detection of CD146
Immunophenotyping of CD146 is the exploration of 
heterogeneous populations of CD146 in the T cells for 
identifying the presence, expression, and proportions. 
Nevertheless, CD146 was previously designated as an 
activation antigen of T cells, the circulation of this anti-
gen is different from other common markers of activa-
tion such as, OX-40, CD38, CD25, HLA-Dr and CD69 
in freshly isolated cells [19]. However, there are differ-
ent amount of the expression of CD146 with many of 
the other activation markers [84]. CD146+ T cells were 
also discovered to be CCR7−, CD28+, CD45RA−, 
CD45RO+, designated as effector memory T cells [66]. 
Markers linked with Th17 cells, CD58 and CD26 were 
concurrently expressed on CD146 positive cells, but 
extra markers associated with Th17 cells, including, 
CCR4 and CCR6 were moderately expressed with CD146 
[76]. Markers associated with Treg cells, CD4+, CD25+ 
and CD127dim/- were simultaneously expressed on the 
CD146 positive cells in healthy subject Fig.  4 and lung 
cancer patient Fig. 5 respectively.

CD146 can be detected utilizing the following 
techniques. These include flow cytometry, immu-
nofluorescence, immunohistochemically staining of 
paraffin-embedded tumor samples, electron microscopy, 
confocal microscopy, application of a chemilumines-
cence  detection system [82], immunomagnetic sorting, 
immunoprecipitation, mass spectrometry, western blot 
[82, 85], ELISA can be used for the detection of soluble 
CD146 from serum or plasma Fig. 6 [11], real-time PCR 
of CD146 mRNA [86] and quantitative real-time PCR 
can also be utilized for the detection of CD146 [87, 88].
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Fig. 4  Expression of CD 146+ in healthy subject. a CD45PreCP-cy5-5-A vs SSCA. b SSC-A vs CD4PE-Cy7-A. c CD127 APC-A vs CD 25 PE-A. d SSCA vs 
CD 146 FITC-A. (E) Count vs CD 146 FITC-A = 3%

Fig. 5  Expression of CD 146+ in lung cancer patient. a CD45PreCP-cy5-5-A vs SSCA. b SSC-A vs CD4PE-Cy7-A. c CD127 APC-A vs CD 25 PE-A. d 
SSCA vs CD 146 FITC-A. e Count vs CD 146 FITC-A = 8%
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CD146 T cells in cancer
CD146 is a multifunctional molecule that contributes 
in various molecular, biochemical, physiological [89] 
and pathological processes relating to immunity, signal 
transduction, stem cell differentiation [75, 90] and angi-
ogenesis [3, 91]. In recent years, various investigations 
revealed that CD146 overexpression significantly relates 
with the metastasis, progression and formation of new 
blood vessels of some malignant tumors which was inves-
tigated in melanoma, esophageal cancer, prostate cancer, 
gallbladder adenocarcinoma, ovarian carcinoma [87, 88, 
92–101]. Currently, researchers are conducting investi-
gations on the different kinds of cancer and the output 
revealed the different correlations of CD146 with can-
cer. Hence, high number of investigation indicated that 
CD146 is highly expressed in solid tumors, including 
lung cancer [12, 13, 102–104], hepatocellular carcinoma 
[105, 106], epithelial ovarian cancer [107], breast cancer 
[108, 109], leiomyosarcoma [110], esophageal squamous 
cell carcinoma [111], gallbladder adenocarcinoma [98], 
colorectal cancer [112], gastric cancer [113], clear cell 
renal cell carcinoma [114], melanoma [115], hematologi-
cal malignancies [116], peripheral nerve tumors [117], 
parotid carcinoma [118], non-small cell lung cancer [12], 
infantile haemangioma [119], adenoid cystic carcinoma 
[120], malignant pleural mesothelioma [121], pancreatic 
cancer [14], prostate cancer [122], cervical cancer and 

endometrium cancer [123]. The different kinds of cancer 
and the implications of CD146 have been summarized 
in Table 2. These obvious suggestions on the expression 
of CD146 in cancer indicated that the transmembrane 
glycoprotein would be further deliberated as a potential 
biomarker for the diagnosis of cancer patients and thera-
peutic target.

Effects of methanol extract of Calotropis procera leaf 
on CD146 expression
In this review, an effect of methanol extract of Calotropis 
procera leaf on CD146 expression was explored to dis-
cover that it has phenolic contents Fig. 7. It revealed that 
at 1000 ug/ml, the phenolic content in CP was similar to 
the standard catechin which indicates that it is an antiox-
idant. CP was used on the blood cells and we discovered 
that it reduced the expression of CD146 Fig. 8; hence it 
may be a potential immunotherapy for the treatment of 
cancer and various diseases. The CD4+ cells increased 
and it was dose dependent. Hence it is very interesting 
to unravel the dose of CP which may be used for the 
treatment of cancer induced animal models. Further 
investigations are also required to find out the molecu-
lar mechanism that is responsible for the reduction of 
CD146 using the CP.

Fig. 6  Detection of sCD146 using ELISA. The expression of sCD 146 was significantly higher in patients than in controls (P < 0.05). From the ELISA, 
the concentration of the sCD146 includes 0.33 ± 0.09 ng/ml in healthy patients (Control), 44.69 ± 0.29 ng/ml, 36.05 ± 0.24 ng/ml, 45.18 ± 0.27 ng/ml 
in adenocarcinoma, squamous and small cell lung cancer, respectively
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Table 2  The implication of increased CD146 in Cancer

Cancer type Implications References

Lung cancer Poor prognosis [12, 13, 102–104]

Hepatocellular carcinoma Promotes metastasis and predicts poor prognosis [105, 106]

Epithelial ovarian cancer Poor prognosis [107]

Breast cancer Elevated epithelial-mesenchymal transition [108, 109]

Leiomyosarcoma Prognostic factor [110]

Esophageal squamous cell carcinoma Poor prognosis [111]

Gallbladder adenocarcinoma Progression, metastasis, and poor-prognosis [98]

Colorectal cancer Poor prognosis [112]

Gastric cancer Poor prognosis [113]

Clear cell renal cell carcinoma Elevated reoccurrence [114]

Melanoma Elevated metastasis and poor prognosis [115]

Hematological malignancies Elevated tumorigenesis [116]

Peripheral nerve tumors Modulator of malignant transformation [117]

Parotid carcinoma Elevated progression and invasion [118]

Non-small cell lung cancer Poor prognosis [12]

Infantile haemangioma Elevated progression [119]

Adenoid cystic carcinoma Elevated progression [120]

Malignant pleural mesothelioma Poor prognosis [121]

Pancreatic cancer Poor Prognosis and cancer progression [14]

Cervical cancer Dissemination and metastasis [123]

Endometrium Dissemination and metastasis [123]

Prostate cancer Poor prognosis [122]

Fig. 7  Total Phenolic content for Calotropis Procera leaf. It revealed that at 1000 ug/ml, the phenolic content was similar to the standard catechin
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Conclusion
Currently, there is no data to describe the genetic asso-
ciation of CD146 expression and IL-17 secretion. How-
ever, some IL-17 secreting T cells can be discovered in 
healthy individuals without CD146 expression on those 
cells. T cells may be potential immunotherapy for lung 
cancer and other types of cancer. Targeting of the T cells 
and CD146 when the ligand is known through the migra-
tion of these cells to sites of injury or tumor cells is inter-
esting. However, investigation unfolding the molecular 
mechanism and regulation of CD146 expression on the 
T cells is still limited and is a hot topic for investigations. 
CD146, apoptosis of the T cells and lung cancer are also 
of very great significance because these may be excellent 
target for the treatment of carcinogenesis. Future investi-
gations to unravel the significance of methanol extract of 
Calotropis procera leaf on CD146 expression will be very 
interesting. Utilization of cancer cell lines, animal mod-
els and using CP as a therapy will be fascinating. Hence 
the molecular mechanism underlying the process by 
which CP ameliorate the expression of CD146 will be of 
unique importance to the investigation. Therefore CD146 
is a molecule of significance which can also be studied in 
other diseases state such as inflammation, COPD, pul-
monary arterial hypertension and other respiratory dis-
eases. Animal models of PAH and other diseases model 
or knockout mouse can be investigated to unravel the 
expression of CD146 in these models and comparisons 
with the human samples can also be conducted to unveil 
the possible diagnosis, therapy and prognosis.
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