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Abstract 

Gastric cancer (GC) is one of the most common cancers with high malignancy. In spite of the great development 
in diagnostic tools and application of anti-tumor drugs, we have not witnessed a significant increase in the survival 
time of patients with GC. Multiple studies have revealed that Wnt, Nrf2, MAPK, and PI3K/Akt signaling pathways 
are involved in GC invasion. Besides, long non-coding RNAs and microRNAs function as upstream mediators in GC 
malignancy. GC cells have acquired resistance to currently applied anti-tumor drugs. Besides, combination therapy is 
associated with higher anti-tumor activity. Resveratrol (Res) is a non-flavonoid polyphenol with high anti-tumor activ-
ity used in treatment of various cancers. A number of studies have demonstrated the potential of Res in regulation of 
molecular pathways involved in cancer malignancy. At the present review, we show that Res targets a variety of sign-
aling pathways to induce apoptotic cell death and simultaneously, to inhibit the migration and metastasis of GC cells.
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Introduction
Cancer is considered as the most challenging public 
health issue in both developing and developed countries 
[1–4]. This life threatening condition burdens high socio-
economic cost. It seems that the incidence rate of cancer 
is rapidly growing due to the aging of population [5, 6]. 
Over the past decades, we have witnessed an increase in 
the incidence rate of Gastric cancer (GC), so that esti-
mates demonstrate that up to 1 million new cases of GC 
are diagnosed annually and over 700.000 deaths occur 
[7–11]. This has resulted in much attention towards this 
cancer. Epidemiological studies demonstrate that GC 

occurs with high frequency in Asia, Europe, and South 
America [12]. The World Health Organization (WHO) 
has divided GC into four characteristic categories includ-
ing papillary, mucinous, tubular, and signet ring cell [13]. 
To date, several diagnostic tools have been developed for 
GC. The most challenging barrier in GC therapy is the 
diagnosis of this life-threatening condition at advanced 
stages. Diagnostic tools have enabled us to diagnose 
GC in its early stages and subsequently, its elimination. 
Endoscopic ultrasound, computed tomography (CT), 
magnetic resonance imaging [14], and positron emission 
tomography are the most common diagnostic tools used 
in GC diagnosis [15].

Hereditary factors are responsible for about 1–3 % of 
cancer, while environmental factors are the main reasons 
of cancer. Smoking, lack of exercise, and poor diet are 
the major environmental factors of cancer [12, 16]. Much 
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attention has been directed towards cancer therapy and 
using chemotherapeutic agents is of interest. However, in 
spite of application of a high amount of chemotherapeu-
tic agents, we have not witnessed a remarkable increase 
in the survival time of patients with cancer. This has led 
to the looking at nature as a rich source of anti-tumor 
drugs. Several studies have revealed the great potential 
of plant-derived chemicals in inhibition of proliferation 
and migration of cancer cells, stimulation of apoptotic 
and autophagic cell death, and enhancing the efficacy 
of chemotherapy [17–20]. Resveratrol (Res) as a natu-
rally occurring compound, is considered a secondary 
metabolite exclusively derived from plants and micro-
bial sources [21–23]. The synthesis process of Res is trig-
gered by the action of stilbene synthase (STS) enzyme 
that incorporates three malonyl coenzyme-A units into 
4-hydroxycinnamoyl-CoA (p-coumaroyl-CoA) [24]. 
This non-flavonoid polyphenol compound is present in 
a number of plants including grapes, peanuts, and ber-
ries [25–27]. A growing body of evidence demonstrates 
that Res functions as a part of defense system of plants 
responding to insect and pathogen attacks [28, 29]. 
Besides, Res is capable of protecting plants against fun-
gal infections and ultra-violet (UV) radiations [30–33]. 
Overall, Res is available in two forms known as cis and 
trans due to the central ethylene moiety. It seems that the 
major form of Res is trans-isomer. However, exposing to 
the UV is associated with formation of cis-isomer [34–
36]. Accumulating data demonstrates that Res has a vari-
ety of pharmacological and health-promoting impacts 
such as antioxidant [37], anti-inflammatory [38], anti-
diabetic [39], anti-tumor [40], hepatoprotective [41], and 
cardioprotective [42].

The great biological and therapeutic activities of Res 
have led to its application in treatment of various can-
cers. It is held that Res is able to target different molec-
ular signaling pathways in cancer therapy. One of the 
difficulties in cancer therapy is the resistance of tumor 
cells into chemotherapy. This problem has led to the 
development of novel synthetic anti-tumor drugs. How-
ever, application of the high amount of an anti-tumor 
drug reduces its capability in next treatments. Further-
more, a number of signaling pathways are involved in 
dynamic progression of tumor cells demanding combi-
nation therapy in suppressing cancer cells. It seems that 
urokinase-type plasminogen activator receptor (uPAR) 
contributes to the regulation of epidermal growth factor 
receptor (EGFR) [43]. Overexpression of uPAR is asso-
ciated with resistance of cancer cells to chemotherapy. 
Administration of Res sensitizes oral squamous cell car-
cinoma (OSCC) to chemotherapy by down-regulation 
of uPAR and its downstream mediator ERK1/2 [44]. 
Res is able to regulate microRNAs (miRs) in enhancing 

the efficacy of chemotherapy. Accumulating data dem-
onstrates that Res upregulates oncosuppressor miR to 
stimulate apoptotic cell death in cancer cells [45, 46]. 
Exposure to Res improves the chemotherapy potential by 
enhancing the expression of miR-122-5p leading to the 
induction of apoptosis and reduced viability of cancer 
cells [47]. Epithelial-to-mesenchymal transition (EMT) 
contributes to the increased malignancy and invasion of 
tumor cells [48]. Inhibition of EMT is of importance in 
cancer therapy. Administration of Res remarkably dimin-
ishes the proliferation and invasion capabilities of breast 
and lung cancer cells by stimulation of tumor suppres-
sor Rad9 [49]. These studies highlight this fact that Res 
is capable of regulation of signaling pathways involved 
in cancer malignancy [50, 51] and its administration can 
be considered as a promising strategy in tumor ther-
apy. Notably, various molecular signaling pathways are 
involved in the malignancy of GC cells and there have 
been efforts to identify these pathways and also their 
upstream and downstream mediators. Accumulating 
data demonstrates that abnormal expression of miRs is 
associated with development of cancer [52–54]. In the 
case of GC, a similar story occurs. It seems that GC cells 
down-regulate the expression of miR-27b-3p to ensure 
their viability and proliferation through enhancing the 
expression of GSPT1 [55]. It is held that the PI3K/Akt 
signaling pathway contributes to the progression of GC 
cells by EMT stimulation [56, 57]. Importantly, UFM1 is 
associated with decreased migration of GC cells through 
inhibition of PI3K/Akt molecular signaling [58]. Long 
non-coding RNAs (lncRNAs) are non-protein coding 
RNA molecules with the length of 200 nucleotides. It has 
been reported that lncRNA deregulation leads to can-
cer generation [59]. LncRNAs are able to dually reduce/
enhance the malignancy of cancer cells. A study reveals 
that lncRNA HOTAIR is capable of elevating the invasion 
of GC cells by induction of CXCR4 and RhoA signaling 
pathways, while another study demonstrates that lncRNA 
GAS5 is related to the inhibited metastasis of GC cells by 
targeting p53 [60, 61]. Mitogen-activated protein kinase 
(MAPK), Wnt, and nuclear factor erythroid 2-related fac-
tor 2 (Nrf2) are other molecular pathways involved in GC 
malignancy [62–64].

At the present review, we demonstrate how Res can be 
beneficial in treatment of gastric cancer (GC).

Current therapeutic strategies, challenges 
and future prospective for gastric cancer
Currently, surgery and chemotherapy are the most com-
mon strategies in treatment of GC [65]. However, the 
recurrence of GC usually occurs after surgery. Besides, 
the resistance of GC cells into chemotherapy is another 
major problem. Notably, there have been efforts to 
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improve the efficacy of chemotherapy. A look at newly 
published articles demonstrates that naturally occur-
ring compounds are applied to enhance the potential of 
chemotherapy. Curcumin is one of them with high anti-
tumor capability [66–68]. Curcumin is able to improve 
the anti-tumor activity of 5-fluorouracil (5-FU) against 
GC cells by inhibition of COX-2 and NF-κB signaling 
pathways [69]. Berberine is another potential anti-tumor 
agent [70]. [70]. It seems that administration of berberine 
is associated with enhanced inhibitory impact of EGFR 
inhibitors on GC cells [71]. It appears that plant-derived 
chemicals are extensively used in GC therapy. However, 
there are some challenges faced in GC therapy. The most 
important one is the low bioavailability of applied anti-
tumor drugs. Furthermore, lack of specific targeting leads 
to the toxicity of anti-tumor drugs against normal cells. 
Nanoparticles (NPs) are focused to increase the bio-
availability of anit-cancer agents such as Res. NPs are 
structures with a particle size as low as 100  nm. These 
nanocarriers are able to remarkably enhance the bio-
availability of anti-tumor drugs by protection against 
degradation and also prevention of drug trapping via 
phagocytosis system. On the other hand, identification of 
cell membrane receptors on cancer cells have resulted in 
the development of receptor-targeted nanocarriers and 
consequently, high anti-tumor activity [55, 72, 73].

Resveratrol and gastric cancer
Resveratrol effect on tumor cell cycle
Although EMT is suggested to be beneficial in wound 
healing and other physiological processes, this mecha-
nism remarkably enhances the metastasis of tumor cells 
[83]. During EMT, an increase occurs in the migra-
tory capability of cells via transformation of epithelial 
cells into mesenchymal cells [84, 85]. Various signaling 
pathways are involved in EMT and accumulating data 
demonstrates that metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1) is capable of induction of 
EMT in a number of cancers leading to their high inva-
sion capability [86–88]. It appears that administration of 
Res effectively down-regulates MALAT1 to prevent EMT 
resulting in reduced invasion and metastasis of GC cells 
[64].

Accumulating data demonstrates that the hedgehog 
(Hh) signaling pathway is vital for physiological condi-
tions such as hematopoiesis and is also involved in tumo-
rigenesis [89, 90]. It has been reported that aberration in 
Hh signaling pathway occurs in a number of cancers such 
as lung cancer, prostate cancer and so on [91–95]. Nota-
bly, the Hh pathway stimulates EMT in GC [96]. Hence, 
modulation of this signaling pathway is of importance in 
inhibition of migration and metastasis of cancer cells. It 
appears that Gli-1 is a biomarker of abnormal expression 

of Hh pathway [97]. Administration of Res significantly 
deactivates Hh pathway by down-regulation of Gli-1. As 
a result, the expressions of factors involved in EMT such 
as Snail and N-cadherin undergo down-regulation, while 
an increase occurs in the expression of E-cadherin to 
suppress EMT resulting in reduced invasion and migra-
tion of GC cells [98].

Accumulating data reveals that Res is able to affect 
various signaling pathway in treatment of disorders [99, 
100]. Down-regulation of protein kinase C (PKC) by Res 
is related to the reduced viability and growth of cells. It 
seems that PKC α has high sensitivity to Res administra-
tion [101]. It has been demonstrated that PKC σ exerts 
anti-proliferative and pro-apoptotic impacts [102–104]. 
Res follows a same strategy in treatment of GC. Admin-
istration of Res enhances the expression of cytosolic PKC 
α and reduces membrane-associated PKC σ protein. 
These impacts lead to the induction of tumor suppressor 
p21 and p53. Besides, Res treatment elevates the levels 
of Fas and Fas-L protein. These effects altogether result 
in stimulation of cell cycle arrest at G2/M phase and 
trigger apoptotic cell death to suppress GC malignancy 
[105]. Chemotherapeutic activity of Res mainly depends 
on its impact on PKC. A growing body of evidence dem-
onstrates that PKC participates in tumor progression, 
tumor proliferation, tumor viability and tumor migration 
[106–108]. Res exerts a negligible impact on cell lysis, 
while it considerably induces G0/G1 cell cycle arrest and 
apoptosis by down-regulation of PKC [109] demonstrat-
ing the potential role of this signaling pathway in pro-
gression and malignancy of GC cells.

Importantly, Res has shown great potential in suppress-
ing the proliferation of tumor cells through targeting cell 
cycle [110–112]. Res applies various signaling pathways 
to target cell cycle. It has been demonstrated that Res 
is capable of affecting the expression of sirtuin 1 (Sirt1) 
[113, 114]. A same story occurs in GC therapy. Adminis-
tration of Res stimulates the activation of Sirt1 leading to 
the cell cycle arrest and induction of senescence in tumor 
cell of nude mice [115].

Resveratrol effect on apoptosis
The stimulation of apoptotic cell death is still one of the 
most common strategies in the field of cancer therapy. 
Notably, various molecular signaling pathways contrib-
ute to the regulation of apoptosis in cancer cells and 
identification of these pathways is of importance in can-
cer therapy [38]. Nuclear factor-κB (NF-κB) is responsi-
ble for regulation of immunological responses [116]. A 
variety of studies have shed some light on the involve-
ment of NF-κB signaling pathway in cancer progression 
and it seems that NF-κB overexpression is related to the 
generation of cancer [117–120]. Administration of Res 
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sensitizes cancer cells to apoptosis via NF-κB down-reg-
ulation leading to a decrease in the level of anti-apoptotic 
factor Bcl-2 and an increase in apoptotic factors cas-
pase-3 and caspase-8 [121]. Mitochondria play a signifi-
cant role in apoptosis induction. As a central gateway, 
mitochondrial pathway modulates both anti- and pro-
apoptotic factors [122–125]. Compounds targeting mito-
chondria are of interest in cancer therapy by induction of 
apoptotic cell death [126, 127]. Res uses same strategy in 
combating GC. Administration of Res is associated with 
disruption of mitochondrial membrane potential. This 
leads to the induction of apoptotic cell death through 
upregulation of caspase-3 and caspase-9, and down-reg-
ulation of Bcl-2. Finally, a remarkable decrease occurs in 
the viability and proliferation of GC cells [128]. Exposing 
GC cells into Res increases the cells having morphologi-
cal features of apoptosis such as chromatin condensation, 
chromatin crescent formation and nucleus fragmen-
tation. Upregulation of BAX and down-regulation of 
Bcl-2 by Res are involved in these anti-tumor impacts 
in implanted human primary gastric carcinoma cells in 
nude mice [129]. Resveratrol plus curcumin could regu-
late p53 post-translational alterations in rat model of gas-
tric cancer [130].

It is held that various GC cell lines respond differently 
to the Res administration. A study conducted by Riles and 
colleagues obviously clarifies this statement. They applied 
three distinct types of GC cells including AGS, SNU-1 
and KATO-III cells. In SUN-1 cells treated withRes, there 
was no trace of alteration in the expression of mitochon-
drial-mediated apoptotic proteins such as Bcl-2, BAX, 
Bid and Smad/Diablo. It seems that survivin inhibition by 
Res contributes to the reduced viability and proliferation 
of SUN-1 cells. However, the story is a little different for 
AGS and KATO-III cells. It appears that mitochondrial 
dysfunction induced by Res is involved in the stimula-
tion of apoptotic cell death in these cells since an increase 
occurs in the level of cytochrome C [131]. Regardless of 
the apoptotic pathway, Res administration is a promising 
strategy in reducing the migration and malignancy of GC 
cells [132].

Resveratrol effect on inflammation
A growing body of evidence demonstrates that pro-
inflammatory cytokines such as interleukin-6 (IL-6) are 
present with high levels in cancer cells. It seems that 
enhanced concentration of IL-6 significantly promotes 
the viability and proliferation of tumor cells [133, 134]. 
Investigation of molecular signaling pathways shows 
that IL-6 elevates the progression of cancer cells through 
induction of Raf-MAPK signaling pathway [135, 136]. 
Similarly, administration of Res suppresses IL-6-me-
diated GC invasion through inhibition of Raf-MAPK 

signaling pathway [137]. The cytokines and peptide 
growth factors force cells to produce ROS [138, 139]. The 
ROS generation is a vital step in enhancing the prolif-
eration of cells by acting as intracellular messenger and 
interacting with molecular pathways such as Ras path-
way [140–142]. In respect to the carcinogenesis impact of 
ROS, using naturally occurring antioxidants such as Res 
is of interest in cancer therapy. After Res supplementa-
tion, an increase occurs in nitric oxide (NO) production 
by nitric oxide synthase (NOS) induction that interacts 
with ROS leading to the reduced viability, proliferation 
and migration of GC cells [143].

Resveratrol effect on oxidative stress
As it was mentioned, ROS are considered as poten-
tial targets in cancer therapy. It has been demonstrated 
that enhanced concentration of ROS is associated with 
a number of pathological conditions [144, 145]. This is 
due to the adverse impact of Res on the cell membrane 
and more importantly, genetic material that sensitizes 
cells to high proliferation and generation of cancer [146]. 
Although much emphasis was put on the negative role 
of ROS, it seems that ROS are important elements of 
homeostasis since they function as second messengers of 
molecular signaling pathways [147]. Hence, regulation of 
ROS synthesis is of importance in treatment of patholog-
ical conditions and preserving homeostasis. In the case 
of GC therapy, Res remarkably reduces the concentra-
tions of ROS via its great antioxidant activity. Investiga-
tion of molecular pathways demonstrates that inhibition 
of ROS-mediated GC progression is induced by down-
regulation of c-Jun and ERK1/2 phosphorylation through 
MEK1/2 [148].

Resveratrol effect on autophagy
Over the past decades, we have witnessed an atten-
tion into autophagy mechanism due to its dual role 
between life and death [149]. This has resulted in target-
ing autophagy in cancer therapy [150]. This lysosome-
mediated mechanism ensures homeostasis and survival 
during physiological condition by degradation of aged 
and damaged organelles and components [70]. Nota-
bly, autophagy is involved in caspase-independent pro-
grammed cell death [151]. So, autophagic cell death is 
considered as one of the most promising strategies in 
cancer therapy [152]. There are a number of pathways 
and macromolecules that are able to regulate autophagy 
[73, 153, 154]. Dihydroceramide is a ceramide meta-
bolic precursor involved in sphingolipid synthesis. Dihy-
droceramide desaturases (Des1 and Des2) convert the 
dihydroceramide into ceramide. Accumulating data dem-
onstrates that dihydroceramide is capable of induction 
of autophagy [155, 156]. Res administration significantly 
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enhances the intracellular level of dihydroceramide to 
trigger autophagy leading to the reduced viability and 
proliferation of GC cells and sensitizing these malignant 
cells into apoptosis [157].

Table  1 indicates the potential therapeutic effects of 
resveratrol against gastric cancer.

Resveratrol effect on multidrug resistance in chemotherapy
One of the most important difficulties faced in can-
cer therapy is multidrug resistance (MDR) [158–160]. 
MDR remarkably reduces the efficacy of chemotherapy 
[161, 162]. ATP binding cassette subfamily B member 
1 (ABCB1) is one of the genes involved in MDR that 
by encoding P-glycoprotein (P-gp) inhibits the enter-
ing of anti-tumor drugs into cells [163–166]. Annexin 
A1 (ANXA1) and thioredoxin (TXN) are other possible 
mechanisms involved in MDR and consequently, cancer 
progression [167–169]. Administration of Res effectively 
diminishes the expression of ABCB1, P-gp, ANXA1 and 

TXN to suppress MDR [170]. [171]. Doxorubicin (DOX) 
is one of the potential chemotherapeutic agents with high 
capability in reducing the viability of cancer cells [172]. 
However, resistance to DOX treatment is a common phe-
nomenon. It has been shown that PTEN is involved in 
EMT-mediated drug resistance [82]. Res is able to inhibit 
DOX resistance by stimulation of PTEN. The activated 
PTEN significantly diminishes Akt signaling pathway 
resulting in suppressing EMT-mediated drug resistance 
[173].

Resveratrol‐loaded drug delivery systems
There are a number of properties associated with 
mesoporous silica NPs (SLNs) making them suitable for 
delivery of genes and drugs [174]. These features include 
low particle size, sustained-release manner and large sur-
face area [175]. This has led to the development of anti-
miR-21- and Res-loaded SLNs for GC therapy. MiR-21 
is an oncogenesis miR that significantly enhances the 

Table 1  The potential therapeutic effects of Res in GC therapy

Cell line/Animal mod-el Dose Duration Outcomes Refs.

Human gastric cancer cell lines SGC7901 
and BGC823

0, 5, 10, 25, 50, 100, 200 and 400 µM 24, 48 and 72 h Inhibition of MALAT1-induced EMT [63]

Human gastric cancer SGC-7901 cell line 0, 100, 200, 300 and 400 µmol/L 48 h Suppressing Hh signaling pathway is asso-
ciated with EMT inhibition

[93]

SGC7901 cells 35.69 µM 72 h Administration of Res stimulates apoptotic 
cell death and cell cycle arrest in GC cells

[99]

Human gastric cancer SNU-1 cells 0, 10, 50 and 100 µM 24 h Induction of apoptosis and reduced viabil-
ity of cancer cells

[100]

Human gastric adenocarcinoma SGC7901 
cells

0, 25, 50, 100 and 200 µmol/L 48 h Stimulation of apoptotic cell death and 
DNA damage through enhancing the 
ROS production

[101]

Human GC cell lines AGS
Nude mice xenograft model

0, 5, 10, 25, 50, 100 and 200 µM
40 mg/kg

24 h
4 weeks

Induction of cell cycle arrest and senes-
cence

[110]

Balb/c-nu/nu mice
BGC823 cells

0.1, 1, 5, 10, 20, 50 and 100 µg/ml
10 mg/kg

24 h
3 days

A significant reduction in tumor burden 
and an increase in apoptosis

[111]

Human gastric cancer SGC-7901 cell line 0, 100, 200, 300 and 400 µmol/L 48 h Suppressing Hh signaling pathway is asso-
ciated with EMT inhibition

[93]

SGC7901 cells 35.69 µM 72 h Administration of Res stimulates apoptotic 
cell death and cell cycle arrest in GC cells

[99]

SGC-7901 cells 50, 200 and 400 µM 24 h Induction of apoptosis by down-regulation 
of NF-κB

[112]

Human gastric cancer cell lines 0, 10, 20, 30, 40, 50 and 100 µM 48 h Inhibition of IL-6-induced Raf-MAPK [113]

Human gastric cancer cell lines that were 
either sensitive or resistant to cytostatic 
drugs

30 and 50 µM 72 h Inhibition of MDR by down-regulation of 
ABCB1, P-gp, ANXA1 and TXN

[114]

Human gastric carcinoma SGC-7901 cells
Nude mice

25 and 50 µM
50 mg/kg

24 h
21 days

Stimulation of apoptotic cell death in GC 
cells through mitochondrial pathway

[115]

Human gastric cancer cells SGC7901 and 
MGC803

Nude mice inoculated subcutaneously with 
SGC7901/DOX cells

50 mg/L
50 mg/kg

48 h
4 weeks

Res activates PTEN to down-regulate Akt 
resulting in EMT-mediated drug resist-
ance

[168]

Human gastric adenocarcinoma cell line 
MGC803

0, 50, 100 and 200 µM 24 h Inhibition of PI3K/Akt signaling pathway 
through PTEN down-regulation signifi-
cantly induces cell cycle arrest

[167]
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malignancy and invasion of cancer cells [176]. It seems 
that loading a combination of Res and anti-miR-21 on 
SLNs remarkably induces apoptotic cell death in GC 
cells. Besides, the synergistic impact of anti-miR-21 and 
Res reduces tumor burden [177], showing their efficacy 
in GC therapy.

Conclusion and remarks
Taking everything into account, it seems that GC is 
still one of the most challenging disorders and there 
have been much effort to treat it. It is worth men-
tioning that cancer cells are able to obtain resistance 
to anti-tumor drugs. This urges scientists to develop 
novel anti-tumor drugs. However, it appears that syn-
thetic anti-tumor drugs have high cost with a number 
of adverse effects against normal cells. Hence, plant-
derived chemicals are of interest in cancer therapy. 
Res is a non-flavonoid polyphenol with several effects 
including apoptosis, cell proliferation inhibition, anti-
inflammatory aspects. Several research has shown the 
therapeutic effects of Res for the amelioration of CRC 
and GC. Res has the potential preventive importance 
in gastric cancer. Res with several potential effects, is 
comparatively safe as well as able to target several cell 
signaling pathways. On the other hand, the bioavaila-
bility of Res seems to be very low in humans and due to 
the metabolic characteristics of res, even a high dose 
may not reach a sufficient concentration of treatment. 
Res may be of benefit for treatment of gasteric cancer. 
However, different techniques have been originated to 
increase the bioavailability of Res, more research are 
needed to differ the efficacy of Res in gastric cancer. 
Res is a non-flavonoid polyphenol with great anti-
tumor activity. In the present review, we discussed 
the latest studies about the efficacy of Res in GC ther-
apy. First off, it is noteworthy that nanocarriers are 

promising candidates in cancer therapy and due to 
the low bioavailability of Res, loading this compound 
on nanocarriers improves its anti-tumor activity. The 
metastasis of GC cells is a challenge and using Res is 
associated with reduced migration of GC cells through 
EMT inhibition. Chemotherapeutic agents are able to 
diminish the viability and proliferation of cancer cells 
through induction of apoptotic cell death. Res applies 
same strategy in GC therapy. Targeting Wnt signaling 
pathway is another capability of Res. By inhibition of 
Wnt, Res remarkably reduces the invasion of GC cells. 
Besides, Res is capable of targeting PI3K/Akt and Hh 
signaling pathways in GC therapy. More importantly, 
administration of Res enhances the potential of chem-
otherapy by sensitizing tumor cells (Fig.  1). These 
significant anti-tumor effects of Res make it an appro-
priate choice for treatment of GC. Importantly, urg-
ing scientists to investigate the potential anti-tumor 
activity of Res against GC in clinical trials in of inter-
est. A look into clinicaltrials.gov demonstrates that Res 
is able to prevent cancer progression and recurrence. 
Unfortunately, there is no study regarding the anti-
tumor activity of Res against GC in clinical trial. This 
should be considered at the next studies.
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