Skip to main content

Table 1 Effect of immune cells on MPE in TIME of lung cancer

From: Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications

Cell type

Other cytokines involved in regulation of MPE

Related cytokines involved in regulation of MPE

Mechanism of effect

Promote( +)/inhibit(−) the formation of MPE

References

Th cells

Th1

IL-2, IFN-γ, TNF-β

IL-12

Stimulate IFN-γ synthesis and polarize Th2 phenotype

[9]

/

IL-10

Suppress Th1 differentiation, proliferation and Th1, Th17 recruitment. Enhance GPR55 mRNA and protein expression

 + 

[10, 11]

Th2

IL-4, IL-5, IL-10

CXCL10

Th1 and Th17 low accumulation lead to CXCL10 reduce

 + 

[10]

Th17

IL-17, IL-21, IL-23,

IL-26

IL-23

Promote Th17 maturation

[15]

/

IL-9

Drive Th17 differentiation, activate Tregs, induce IL-17 release

 + 

[26]

/

IL-17

Enhance angiogenesis and proliferation of tumor cells, increase permeability of the pleural microvessels

 + 

[20]

/

CCL20, CCL22

Induce recruitment of Th17 in MPE

 + 

[19]

/

IL-26

Promote proliferation and differentiation of Th22, upregulate IL-22

[21]

Th9

IL-9

IL-9

Promote proliferation of tumor cells

 + 

[24]

/

CCL20

Induce recruitment of Th9 in MPE

 + 

[25]

/

IL-17

Promote Th9 differentiation and activate the immune response

[18]

Th22

IL-22, IL-26

IL-22

Promote the recruitment of Th22 to pleural cavity

[30]

/

IL-26

Increase CD4+IL-22+T-cell subsets

[21]

CTLs

CD3+CD8+T cell

IL-2, Perforin,

Granzyme B

IL-2

Decrease PD-1 expression and reverse CD8+T cells exhaustion

[40]

/

TIM-3

Decrease IFN-γ, TNF-α and IL-2 production

 + 

[44]

/

CTLA-4

Reduce ICOS+Th1-like CD4+ T cells and CD8+T cells

[49]

/

Caspase-8/9 Inhibitor

Rescue CD8+T cells and block Fas/FasL signaling pathway

[51]

/

IL-26

Gzm B and killing capacity of impair CD8+T cell was decreased

 + 

[21

CD3+CD4+T cell

IFN-γ, TNF-α, IL-2

APCs

Specific CD4+T cell subsets generate autologous tumor-specific immune responses

[56]

Tregs

IL-4, IL-10, TGF-β

miR-141

Increase the genetation of CXCL1 and recruit Tregs into MPE

 + 

[60]

/

CCL22

Exert inhibitory function

 + 

[17, 64]

/

Latency‐associated Peptide(LAP)

CD39+Tregs inhibit Th17 proliferation and differentiation

 + 

[65]

/

IRF4

Promote the conversion of Tregs to Th17-like T cells

[67]

/

IL-8

Increase MMP-2/9 activity and tumor metastatic activity

 + 

[68, 69]

B cells

IL-10, TGF-β

PD-1/PD-L1

Activated naive B cells suppress the expansion of Th17 cells

 + 

[75]

TAMs

M1,M2

IL-1, IL-6, IL-12, TNF-α, IL-10, PGE2, TGF-β, MMPs, VEGF

IL-8

Up-regulate TGF-β and increase CCL22

 + 

[68]

TGF-β

Reverse impaired cytotoxic effects of CD4+ and CD8+ T cells

[47]

IL-10, M-CSF,

TGF-β

Induce TAMs toward M2 type polarization

 + 

[80]

TNF-α and IL-10

Induce PD-L1 expression, lead to T cells dysfunction

 + 

[81]

DCs

MHC-II

IL-10 and VEGF

Inhibit the antigen-presenting function of DCs

 + 

[89]

/

TLR4/7/8 Agonist

InfDCs induce differentiation of CD4+ memory T cells into Th1

[90]

MDSCs

VEGF, bFGF, MMPs

VEGF

Increase vascular permeability and promote angiogenesis

 + 

[91, 94]

IL-12, IL-10

Downregulate IL-12 expression and upregulate IL-10, suppress NKs killing activity and DCs maturation

 + 

[97, 98]

NKs

Perforin, Granzyme

TGF-β, IL-10, PGE2

Inhibit NKs activity

 + 

[103]

/

IL-2

PE-NK cells have high killing activity, are not inhibited in TME

[106]

/

IL-15

PE-NK cells control tumor growth in vivo

[107]

Asbestos-related macrophages

/

ROS

Generate ROS and induce apoptosis in pleural mesothelial cells

 + 

[110,111,112]

TNF-α, IL-1β, IFN-γ

iNOS

Activate iNOS and be link to the fibroproliferative and neoplastic effects of asbestos

 + 

[115]

/

HMGB1

Release of TNF-a and enhance the activity of NF-κB

 + 

[123, 124]